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ABSTRACT
Designing immersion is the key challenge in virtual reality;
this challenge has driven advancements in displays, render-
ing and recently, haptics. To increase our sense of physical
immersion, for instance, vibrotactile gloves render the sense
of touching, while electrical muscle stimulation (EMS) ren-
ders forces. Unfortunately, the established metric to assess
the effectiveness of haptic devices relies on the user’s subjec-
tive interpretation of unspecific, yet standardized, questions.
Here, we explore a new approach to detect a conflict in

visuo-haptic integration (e.g., inadequate haptic feedback
based on poorly configured collision detection) using elec-
troencephalography (EEG). We propose analyzing event-
related potentials (ERPs) during interaction with virtual ob-
jects. In our study, participants touched virtual objects in
three conditions and received either no haptic feedback, vi-
bration, or vibration and EMS feedback. To provoke a brain
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response in unrealistic VR interaction, we also presented the
feedback prematurely in 25% of the trials.

We found that the early negativity component of the ERP
(so called prediction error) was more pronounced in the
mismatch trials, indicating we successfully detected haptic
conflicts using our technique. Our results are a first step
towards using ERPs to automatically detect visuo-haptic
mismatches in VR, such as those that can cause a loss of the
user’s immersion.
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1 INTRO
A key challenge in virtual reality is to create a user experi-
ence that mimics the natural experience as closely as possible.
This challenge has propelled advancements in display soft-
ware and hardware (VR headsets and rendering), interaction
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techniques and, more recently, in haptic technology. In fact,
many researchers argue that attaining haptic realism is the
next grand challenge in virtual reality [8, 51].
The addition of haptic feedback in VR has been shown

to dramatically increase the user’s sense of immersion [38].
For instance, vibrotactile gloves [22] stimulate the user’s
sense of touch, and force feedback and exoskeletons [7, 19]
or electrical muscle stimulation [26, 27] stimulate the user’s
proprioceptive system.
To better understand how different interaction technolo-

gies support real world-like user experiences, questionnaires
are used that ask "how realistic is it? (from 1-7)" [42, 45, 50].
These questionnaires are also used as a metric to assess how
effective a haptic device is in rendering a realistic simulation
(e.g., [2, 39, 56] just to mention a few). However, as Slater
pointed out in his critique, these metrics are subjective [44],
i.e., they rely on the user’s own introspection and frame
of reference. Furthermore, these metrics require breaking
the user’s immersion—literally, as they require the user to
halt the immersive experience—to collect the data about the
previous interaction.
Instead, in this paper, we propose analyzing the user’s

brain responses as a first step towards automatically detect-
ing visuo-haptic mismatches, such as those that can cause
loss of immersion. In the future, such a technique can be seen
as a complimentary or even alternativemetric of visuo-haptic
immersion that, unlike questionnaires, does not require any
task interruption or subjective reflection. Our approach, de-
picted in 1, works by analyzing the user’s brain dynamics
captured by an EEG worn under the VR headset. We found
that we can use the user’s brain potentials to detect sensory
mismatches that occur in moments where the VR experience
is not immersive (e.g., due to a poorly configured collision
detection, inadequate or delayed haptic information, etc.).

2 TOWARDS ERPS AS A METRIC FOR HAPTIC
IMMERSION

The goal of haptic devices is to render realistic sensory feed-
back that mimics the sensory experience a user would nor-
mally perceive when interacting with the real world. The
simple case that we examine here is of touching an object.
Imagine grasping a cup of coffee on the breakfast table: as
we reach out for the cup, our visual system provides ongoing
feedback about the position of the arm and hand relative
to the cup on the table, while proprioceptive feedback from
muscles and joints provides information about the relative
position of the hand and the strength of our grasp. Com-
bined with the motor plan, the sensory feedback is used to
compare what is effectively happening in the environment
with what was predicted to happen [11]. When making con-
tact with the cup, the visual and proprioceptive feedback
are integrated with haptic feedback providing information

Figure 1: We propose using the prediction error negativity
of the brain’s event related potential (ERP) to detect visuo-
haptic conflicts arising from unrealistic VR feedback. In our
study, participants selected objects in VR. To provoke their
brains to process an unrealistic interaction, we sometimes
provided the haptic feedback prematurely. When subtract-
ing these ERPs to the ERPs from realistic interactions, we
found that the negative amplitude of the error prediction
increased, hinting at a loss in immersion.

about the contact with the object. In the case where all sen-
sory information channels provide consistent feedback, the
action would be successful (and the coffee can be enjoyed).
However, in the case of amismatch in the incoming informa-
tion, attention has to be directed to this mismatch so that the
action can be corrected in real-time [41]. It is precisely this
idea – that the brain has evolved to optimize motor behavior
based on detected sensory mismatches – that inspired us
to investigate brain responses to sensory mismatches as a
potential metric for haptic immersion.

To investigate these prediction errors in VR, an electroence-
halogram (EEG) can be used. An EEG measures the electrical
activity of cortical neurons in the human brain with high
temporal resolution [32]. Transient sensory events (e.g., hap-
tic feedback from touching a coffee mug) evoke event-related
potentials (ERPs) in the ongoing oscillatory activity of the
brain, reflecting sensory and cognitive processing of incom-
ing stimuli [29]. An ERP is a stereotyped response comprised
of a series of positive and negative deflections. One specific
component of the ERP is the prediction error negativity
(PEN)—a negative potential that occurs from 100 to 200 ms
whenever a deviation from the predicted state of the environ-
ment is detected [41]. We propose utilizing this prediction
error (highlighted in Figure1) as a metric for haptic immer-
sion, a potential immersion indicator that does not require
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subjective interpretation or interrupting the user, which re-
sults in breaking the immersive experience. Furthermore,
as we will discuss, this metric can be used in realtime to
continuously adapt an environment depending on the users
prediction of and actual state of the environment.
To actualize this proposal, we conducted a user study in

whichwemeasured the brain activity of 11 participants using
a 64 channel EEG system. During the VR experience, partici-
pants touched different virtual objects with each touch being
accompanied by feedback via the incremental combination
of popular feedback modalities: (1) visual feedback, (2) tactile
(via vibration) + visual feedback, and (3) force feedback (via
EMS) + tactile + visual feedback. To provoke the participant’s
brain into processing the experience of an unrealistic VR in-
teraction, we provided the haptic feedback prematurely in
25% of the trials. When comparing these ERPs to the ERPs
from realistic interactions, we found that the amplitude of
the PEN increased, indicating that we can successfully detect
error processing hinting at a loss in immersion, without inter-
rupting the VR experience. Furthermore, we found that this
error prediction systematically covaried with the number of
feedback channels. Before detailing our experiment, we will
leverage the HCI and neuroscience literature to ground our
ERP-based approach.

3 RELATEDWORK
Our approach builds on the research done in the fields of
Virtual Reality (VR), haptics, neuroscience and cognitive
psychology.

Assessing immersion/presence in VR
One of the most commonly used questionnaires for evaluat-
ing how a user experiences presence in a virtual environment
is the Igroup Presence Questionnaire (IPQ) [42]. The ques-
tionnaire spans over 14 questions on four domains: general
presence, spatial presence, involvement and experienced re-
alism. Its broad application scope makes it a widely adopted
metric used by [14, 16], just to cite a few. The authors of the
IPQ state that they interpret sense of presence as an individ-
ual experience and therefore a matter of subjective rating
scales. However, researchers have critiqued this approach
precisely due to its subjectivity. For instance, Slater elabo-
rated a critique on these metrics in [44] and as Garvia-Valle et
al. put it "presence is a subjective parameter, and that is why
the results depend on the participant opinion"; they even
add "their answers depend on their level of expertise" [15].

Assessing haptic immersion
There are many ways to evaluate a haptic device, one of the
more established is the Just-noticeable difference (JND) [46].
This study design allows researchers to measure the percep-
tual threshold by forcing the user to consider whether two

haptic events are dissimilar. While methods such as the JND
are very popular (e.g., [1, 37]), they target the user’s percep-
tual apparatus and are not a measure of haptic immersion in
a VR environment. Thus, many researchers rely the presence
questionnaire to assess haptic immersion.
The IPQ has been used by many researchers seeking to

better understand their haptic devices. Just to exemplify a
few: a vibrotactile cane for blind VR users [56]; a multi-
haptics interface that uses a combination of vibration, wind,
water spray and heat [39]; a wind feedback device based
on head-mounted fans [23]; vibration feedback for roller-
coaster experiences [2]; an exoskeleton that provides force-
feedback [9]; and so forth.

In certain cases, the researchers selected a few questions of
the standard IPQ, but felt the need to append haptic specific
questions. For example, when Calvo et al. evaluate their
aforementioned exoskeleton device in a bow and arrow VR
simulator [9], they appended two haptic specific questions
to the IPQ, so they could evaluate the sensation of pulling on
the bowstring. Moreover, there seems to be an abundance of
recent research in VR haptics that does not use the IPQ at
all and, instead, authors craft their own questions directly
targeted at their devices (e.g., [15, 21, 26]). These examples
propelled us to explore a complementary or perhaps even
alternative method to detect conflicts in the user’s sense of
haptic immersion.

The impact of realism in brain responses
The idea to analyze the user’s brain response as an indicator
of the user’s state has become increasingly popular at the
intersection of neuroscience and HCI [5, 52, 54].

For instance, Zander et al. revealed that, as users observed
a cursor moving towards a target on a screen, any deviation
from the user’s expectation about the cursor path was re-
flected in the amplitude of the prediction error negativity
(PEN) [55]. Similarly, Holroyd et al. found out that partici-
pants exhibit a negative potential around 200ms after seeing
a visual stimulus that fell outside their expectations [20].
Along the same lines, Coles et al. found that the negative
evoked potentials are indeed sensitive to the processing of
incoming stimulus [12]. These studies utilized precisely the
same component of the ERP we propose for detecting visuo-
haptic conflicts.

More recently, Singh et al. demonstrated that, in an object
selection task in VR, the PEN component of the ERP was
more pronounced for incorrect feedback when the user’s
hand was represented by a realistic hand avatar as compared
to unrealistic representations [43]. Furthermore, they found
the PEN amplitude correlated with the level of realism of the
avatar hand, as suggested by the uncanny valley theory [30].
Also, Padrao et al. have shown, in a VR simulation, a differ-
entiation of both the ERP amplitudes and latency between
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self-generated and observed avatar behavioral errors in a
reaction time task prone designed to provoke errors in the
trials [34].
Moreover, Gonzalez-Franco and Lanier recently argued

that it is precisely the sensory prediction model that enables
all illusions in VR to take place [17]; thus, it is a key neural
mechanism for understanding immersion. Taken together,
these results show a link between the prediction error signal
and the level of immersion, suggesting that the increased
immersive experience of the user is reflected in an increased
sensitivity to deviations from the expected changes in the
VR environment during the interaction.

4 USER STUDY
The objective of our study is to explore whether ERPs have
potential in detecting visuo-haptic conflicts in VR. As such,
we designed a study in which participants perform a 3D ob-
ject selection task in VR (modeled after [43]). As a participant
reaches out to touch an object, they are presented with three
sensory feedback modalities (a visual baseline, tactile and
tactile with force-feedback). However, to provoke the partic-
ipants’ brains into processing an unrealistic VR interaction,
we sometimes provide the feedback prematurely.

We hypothesized that the prediction error negativity (PEN)
component of the ERP would respond to this sensory conflict
in a systematic manner.

Participants
We recruited 11 participants from our local institution (7
female and 4 male; mean = 27.5 years old, sd = 2.8), all
right-handed. No participant had experienced VR with either
vibrotactile feedback at the fingertip or any form of force
feedback, including EMS. Participants received 12 USD per
hour. The study design was approved by the local ethics
committee and all participants provided written informed
consent prior to their participation.

Apparatus
The experimental setup, depicted in Figure 2, comprised: (1)
a VR headset and a wrist-mounted wearable VIVE tracker,
(2) a 64-channel EEG system, (3) one vibrotactile actuator
worn on the fingertip, and (4) a medically-compliant EMS
device connected via two electrodes worn on the forearm. To
assist readers in replicating our experiment, we provide the
necessary technical details, the complete source code to the
VR experiment, the collected data, and the analysis scripts 1.

(1) VR and hand tracking. We used an HTC Vive head-
set with the Vive Deluxe Audio Strap to ensure a good fit and
less discomfort due to the EEG cap. We used a Vive Tracker,
attached to the participant’s wrist, to track their right hand.
1https://osf.io/x7hnm/

vibration 
motor

EMS

64 channel EEG

Figure 2: Our experimental setup (image with consent from
participant).

(2) Vibrotactile feedback. We used a vibration motor
(Model 308-100 from Precision Microdrives), which generates
0.8g at 200Hz. This motormeasures 8mm in diameter, making
it ideal for the fingertip. The vibration feedback was driven
at 70mA by a 2N7000 MOSFET, which was connected to an
Arduino output pin at 3V.

(3) Force feedback. We actuated the index finger via
electrical muscle stimulation (EMS), which was delivered via
two electrodes attached to the participants’ extensor digito-
rum muscle. We utilized the extensor digitorum since we
found that we can robustly actuate it without inducing par-
asitical motion of neighboring muscles; this was verified
during pilot studies. This finger actuation was achieved via
a medically-compliant battery powered muscle stimulator
(Rehastim from Hasomed), which provides a maximum of
100mA and is controllable via USB. We chose this device
since it had been successfully used by researchers as a means
to generate force feedback in both VR [27] and AR [28]. The
EMS was pre-calibrated per participant to ensure a pain-free
stimulation and robust actuation.

(4) EEG Setup. EEG data was recorded from 64 actively
amplified electrodes using BrainAmp DC amplifiers from
BrainProducts. Electrodes were placed according to the ex-
tended 10% system [33]. After fitting the cap, all electrodes
were filled with conductive gel to ensure proper conductivity
and electrode impedance was brought below 5kOhm for all
electrodes. EEG data was recorded with a sampling rate of
1000 Hz. We synchronized tracking, EEG data, and an ex-
periment marker stream that marked sections of the study
procedure using labstreaminglayer2.
2https://github.com/sccn/labstreaminglayer
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Figure 3: Interaction flow depicting one trial in our 3D object selection task.

Training phase
We asked participants to wear the HTC VIVE VR headset
for a maximum of 24 trials practice trials. Overall, the EEG
fitting, calibration, and practice trials took around 30minutes
(with two experimenters).

Task
Participants performed a 3D object selection task in VR. The
interaction flow of our task, depicted in Figure 3, was as
follows: (1) participants moved their hands from the resting
position to the ready position, to indicate they were ready to
start the next trial; (2) participants waited for a new target
to appear (the time of a new target spawning was random-
ized between 1-2 s); (3) then, the target (a cube) would ap-
pear in one of three possible positions (center, left, right),
all equidistant from the participant’s ready position; (4) then,
participants acquired the target by moving and touching the
target with their index finger. (5) After a target was acquired,
participants moved back to the resting position. Here, they
could take a break before the next trial.

Interface conditions
Participants performed the task in three additive feedback
conditions:

(1) visual-only (Visual): when participants touched the
cube, it changed its color from white to red (visual feedback);
our no-haptics baseline

(2) tactile (Vibro): when participants touched the cube in
the vibro condition, they received a 100 ms vibroactile stim-
ulus and the color change (visual + tactile feedback); this is
the only available haptic feedback in today’s VR experiences.

(3) force-feedback (EMS): in this condition, participants
also received a 100 ms of EMS stimulation at the index finger
extensor in addition to the visual and vibrotactile feedback
(visual + tactile + force feedback). As prior research showed
the EMS stimulation of the opposing muscle (in our case, the
extensor) is perceived as the resisting force that arises from
pushing against the cube (i.e., force feedback) [25–27].

We designed our three feedback conditions additively be-
cause additional haptic feedback is generally associated with

more haptic realism, therefore, we hypothesized that ERPs
would demonstrate some correlation to the ascending level
of the feedback’s realism.

Introducing Visuo-Haptic Mismatches
To allow us to compare the elicited ERPs in a realistic vs.
unrealistic interaction, we presented participants with two
different classes of trials: match trials (C) (75% of the tri-
als) andmismatch trials (M) (25%). This procedure elicits
a prediction mismatch signal in 25% of the trials similar to
previous designs investigating the impact of target probabil-
ities on ERP modulations [36]. In the matching trials, the
feedback stimuli were presented upon touching the object,
exactly when participants expected them to occur based on
the available visual information (finger touching the target).
In contrast, in the mismatch trials, the feedback stimuli
were triggered prematurely, which was accomplished by en-
larging the invisible radius of touch detection by 350%.While
in the match trials, we used a cube collider of the exact size of
the VR cube, in the mismatch trials, we used a larger sphere
collider. Our collider enlargement was based on the study
design by Singh et al. [43], in which they showed that VR
users can detect a visual mismatch at around 200% of offset
from the target. In our pilot tests, we decided to extend the
offset to 350% to make the mismatch more obvious so as to
provoke more pronounced prediction errors.
Also, we used a match-to-mismatch ratio of 75%-25% of

the total trials by modeling our study after previous stud-
ies, which also ensure that participants are faced with a de-
tectable unrealistic behavior of the virtual environment [13,
24, 48]. For these unrealistic trials to occur, the participants
must first be able create a stable model of how the VR world
operates, thus the VR world cannot behave at a random
50%-50% match-mismatch ratio.
Finally, these match vs. mismatch trials were presented

in five randomly generated sequences, each with an equal
distribution of matches and mismatches.
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Experimental design
The experiment consisted of five phases: (1) a setup phase;
(2) a calibration phase; (3) a short training phase; (4) the
task itself, in all three possible interface conditions, each
followed by a subset of the IPQ questionnaire; and, lastly
(5) participants were asked about their experience in the VR
and which condition they enjoyed the most.

We used a within-subjects design with 100 trials per feed-
back condition. The order of the Visual and Vibro conditions
was randomized across participants with the EMS condition
always being the last block. This was done to avoid poten-
tial overshadowing of the EMS stimulation (a very strong
sensation) on the two other stimulation conditions.
For completeness, at the end of each condition we pre-

sented the four most relevant questions from the standard
IPQ [42], in particular: G1, REAL2, SP4 and INV1. However,
our hypothesis was that the inclusion mismatch trials, which
were presented in 25% of the cases, would lower the IPQ
ratings dramatically.

EEG data processing
Weutilized the EEGLAB3 andMoBILAB4 toolboxes inside the
MATLAB environment for our analysis. To assist the reader
in replicating our analyses, we provide data and scripts5.
The inherent delay of the EEG setup was corrected by sub-
tracting 63ms to the timestamps. The raw EEG data was
then re-sampled to 250Hz, high pass filtered at 1Hz and low
pass filtered at 125Hz. Finally, the data was re-referenced to
the average of all channels including the original reference
channel, the FCz electrode at the forehead.
To reject eye and line noise activity we computed inde-

pendent component (IC) analysis on a dataset containing the
cleanest 85% of the data. The IC is a robust and established
method to separate the scalp EEG signals into independent
sources, originating from different brain areas or artifacts
(e.g., eye blinks) [47]. To perform the IC analysis, the orig-
inal data was split into 1 second long epochs, and we cal-
culated for each epoch the (1) mean absolute amplitude of
all channels, (2) standard deviation across all channel mean
amplitudes, and (3) the Mahalanobis distance of all channel
mean amplitudes. Then, we joined the results for each epoch
of all three methods and ranked all epochs highest to lowest.
We rejected the 15% highest ranking epochs [18].

On this cleaned data, we computed a single-model AM-
ICA [35]. Lastly, we automatically assigned source descrip-
tions to each independent component using the ICLabel
toolbox. We selected eye and line noise components (mean =
3.1components, sd = 1.4) if they were assigned a probability
3https://sccn.ucsd.edu/eeglab/index.php, last accessed 9/9/2018
4https://sccn.ucsd.edu/wiki/MoBILAB, last accessed 9/9/2018
5https://osf.io/x7hnm/

higher than 0.8 to belong to the eye or line noise category
and eliminated them from the data for further processing.

Extracting the ERPs
To obtain the ERPs (shown in Figure 4), we filtered the EEG
data with a 0.2Hz high pass and 35Hz low pass filter. Then
we sliced it between -0.3 seconds to 0.7 seconds around the
stimulus onset, i.e. the moment of object selection. To guar-
antee robust data, we rejected 10% of the noisiest epochs
using the approach described before. We focused our anal-
ysis on one electrode, FCz, located on the forehead, which
has been shown in prior research to be the focal point of this
activity [43].
Furthermore, we automatically extracted the ERP nega-

tivity peaks and their latencies by locating the minimum
peak in a 100 to 300 ms time window after object selection,
using a 10Hz low pass filter. The time window was derived
from visual inspection of the mean difference ERP wave, see
Figure 1.

5 RESULTS
Our most important finding was an interaction effect of
the level of haptic feedback and feedback congruency on
ERP amplitude at the FCz electrode. As we will present, our
findings suggest that this effect originates when the partici-
pants’ brain processed the mismatch trials. Other potential
candidate confounding effects that could explain this were
controlled by subtracting mismatch from match trials.

ERP results
We observed a strong amplitude modulation occurring at the
same instant as the participants selected the VR object; these
are our ERPs, depicted in Figure 4.

First, in the matched trials, we observed a consistent ERP
shape among participants, with a stereotypical main positive
component that occurred around 200 milliseconds after the
object was selected and matching feedback was provided,
depicted in Figure 4(A). We found that this positive deflection
was most pronounced in the EMS condition.

Secondly, in the mismatch trials (with premature feed-
back), we observed a consistent ERP shape among partici-
pants, but different from the match trials. In fact, as depicted
in Figure 4(B), we observed a negative deflection around
170ms after a participant had selected the object (i.e, the
prediction error), and a subsequent positive peak reaching
a maximum around 300ms. Similar to the match trials, the
ERPs in the EMS condition were more pronounced than
Visual or Vibro.

To validate our hypothesis we must compare the match
and mismatch ERPs. To compare these, we subtracted the
mean amplitude of all match trials from the mean amplitude
of all mismatch trial within each participant; this is what we
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Figure 4: ERP amplitude (in µV ) and standard error of the
mean at the forehead electrode FCz across [A] all match tri-
als and [B] mismatch trials in a -300ms to 700ms window
centered at the object selection time, for each of the three
feedback conditions (Visual, Vibro and EMS).

depict in 6. We found that the amplitude of a global minimum
after stimulus onset differs significantly when experiencing
EMS (mean = −6.2µV , sd = 2.1) compared to the Vibro
(mean = −4.7µV , sd = 2.4) and Visual (mean = −4.0µV , sd =
1.7) conditions (F (2, 30) = 3.31p = .05,η2 = .18).

Post-hoc, we tested non-parametric pairwise differences
usingWilcoxon signed-rank tests [49]. Post-hoc comparisons
for latency and amplitude of the prediction error peaks are
depicted in Figure 6. First, as depicted in Figure 6(B), we
observed no significant differences for the peak latencies over
the three conditions. Secondly, we found that the negativity
peak amplitude was more pronounced while experiencing
EMS compared to Vibro (p = 0.1) as well as significantly
lower compared to Visual (p < 0.05)—this validated our main
hypothesis, showing that the prediction error amplitude is a

Figure 5: Amplitude and standard error of the mean of the
resulting ERPs obtained by subtracting the mean amplitude
of all match trials from themean amplitude of all mismatch
trials for each participant (in µV ) at the forehead electrode
FCz; for all three feedback conditions (Visual, Vibro and
EMS)

suitable approach to detect a visuo-haptic conflict, such as
the one we induced in the mismatch trials.

Questionnaire and users’ comments
First, as expected, we observed no significant differences
in the level of immersion between conditions for any of
the four IPQ questions we asked; this is likely caused by
the experiment design, which contains randomly presented
unrealistic trials that score very low on immersion.

Second, in the exit interviews, 8 participants voiced (that)
they prefer the comfort and experience of the Vibro condition.
Two participants preferred the EMS condition, stating it was
“more engaging”. One last participant stated that the visual
condition was the most realistic condition but added “it felt
easier to perform the task in the EMS condition” (likely due
to the extra force feedback that informs of collision).

6 CONTRIBUTION, BENEFITS & LIMITATIONS
With this study, we contributed a new approach to auto-
matically detect conflicts in visuo-haptic sensory integration
based on analyzing event-related brain potentials.We demon-
strated in eleven participants using EEG recordings that our
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Figure 6: Negative peak amplitudes (in µV ) and latencies (in
ms) 100 to 300ms post object selection event in difference
ERPs, see figure 5. Dots represent individual participants.
Uncorrected p-values of pairwise comparisons were com-
puted with non-parametric rank-sum tests.

method is able to correctly detect prematurely given visuo-
haptic feedback (combinations of visual, vibration and EMS).
In the future, this approach might thus be used in combi-
nation with questionnaires such as IPQ or as an alternative
measure that does not require interrupting the user.

We argue in favor of the scalability of our findings to com-
plex environments: Successfully performing intended motor
actions is the most fundamental way we interact with our
environment. The ERP negativity paradigm relies on the fact
that during well-known tasks (e.g. motor tasks) prediction
errors elicit negative signals when the environment has a
useful level of predictability. In fact, ERPs have been shown
to model prediction mismatches in fairly complex setups
such as: robotic arm control, driving, and gaming [3, 10, 40].
Furthermore, current trends in neuroadaptive technologies
emphasize the scalability of these signals beyond simple
tasks [55]. These findings suggest that this effect will be con-
sistent in other, more complex, VR tasks that also require
motor commands such as touching objects.

Implications for the future of VR Research
We believe that this is a first step towards a potential metric
for visuo-haptic immersion based on detecting visuo-haptic
mismatches. If follow up studies replicate the reported pat-
terns of ERP modulation based on sensory mismatch, VR re-
search will benefit four-fold: (1) evaluating haptic immersion

via ERPs does not require interrupting the user’s immersive
experience to ask questions. (2) The latter will further enable
to conduct background evaluations of the user’s sense of
haptic immersion, enabling new paradigms for user studies
in VR (using implicit measures). (3) ERPs are not subject
to the same degree of introspection as the standard pres-
ence questionnaires. (4) This technique can be used as the
building-block for VR applications that want to automatically
adjust to the user’s perception of conflicts, e.g., using our
approach, an application could automatically adjust collision
detection volumes based on the user’s ERPs.

Limitations
Aswith any system based on EEG, our approach has its inher-
ent shortcomings: (1) ERP data is typically not taken per-trial
but averaged over many trials and thus require high number
of trial repetitions. In addition, (2) high-resolution EEG is
still cumbersome to apply and requires time and expertise.
However, researchers are working towards single-trial ERP
analysis approaches [6], and we do believe that new EEG
systems will be directly embedded in future VR headsets
allowing easy setup and recording of electrophysiological
signals 6 with new comfortable electrode types [31], includ-
ing dry electrodes [53]. These EEG limitations put a cap on
using our approach for quickly iterating on the design of a
haptic VR scene. However, when designers want to develop
and validate haptic immersion in VR scenarios without in-
terrupting the user, our approach could, in the future offer, a
potential replacement for questionnaires.

7 CONCLUSIONS
In this paper, we propose a technique that allows us to detect
haptic conflicts in VR, which is based on event-related brain
potentials obtained using EEG during interactionwith virtual
objects. We found out in our user study that the early nega-
tivity component of the ERP (the prediction error) is more
pronounced during situations with haptic conflicts, such as:
inadequate or delayed haptic feedback, poorly configured
collision detection, etc. This result suggests we can success-
fully detect haptic conflicts using our proposed technique.
In fact, we found out that, when the number of mismatched
feedback channels increases, the prediction error increases.

Thus, we believe this is a first step to establish the potential
of ERPs as an indicator for visuo-haptic mismatches in VR.
We discussed the impact of our findings for VR research
and lay out two potential avenues to this future metric: a
complement to the traditional presence questionnaires or
an alternative metric that does not require interrupting the
user.
6http://looxidlabs.com/product/, last accessed on 18/09/2018.
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As for future work, we plan two courses of action, a techni-
cal and an experimental angle. First, we plan to explore a real-
time implementation of our analysis scripts, which would
enable real-time adaptation of the haptic devices based on
the user’s ERPs (e.g., inspired by recent work in EEG-based
adaptive VR [53]); to achieve this we will explore implement-
ing our scripts into a real-time EEG-based cloud service, such
as intheon7. Secondly, while we believe our work is a first
step, more research is required to solidify ERPs as a metric
for haptic immersion; for instance, one needs to explore how
sensitive the prediction error is to different sensory channels
beyond vibration and EMS.
Lastly, our work might fuel a new investigation into the

uncanny valley of haptics [4]. Specifically, one might inves-
tigate at what perceptual threshold does haptic feedback
negatively impact the accuracy of user’s predictions of a
virtual environment?
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