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Figure 1: We propose a novel modality for authentication: electrical muscle stimulation (EMS). To explore it, we created an

interactive system that (a) stimulates the user’s forearm muscles with electrical impulses (i.e., using one of 68M possible

EMS challenges); (b) measures the user’s involuntary finger movements, which are unique because everybody’s physiology

is different; (c) verifies this response using an authentication model, and immediately eliminates this challenge, making our

system secure against data breaches and replay attacks as it never reuses the same challenge. We demonstrate it here using

the example of (d) authenticating a VR user without passwords or PINs.

ABSTRACT

We propose a novel modality for active biometric authentication:

electrical muscle stimulation (EMS). To explore this, we engineered

an interactive system, which we call ElectricAuth, that stimulates

the user’s forearm muscles with a sequence of electrical impulses

(i.e., EMS challenge) and measures the user’s involuntary finger

movements (i.e., response to the challenge). ElectricAuth leverages

EMS’s intersubject variability, where the same electrical stimulation

results in different movements in different users because every-

body’s physiology is unique (e.g., differences in bone and muscular

structure, skin resistance and composition, etc.). As such, Electri-

cAuth allows users to login without memorizing passwords or PINs.
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ElectricAuth’s challenge-response structuremakes it secure against

data breaches and replay attacks, a major vulnerability facing to-

day’s biometrics such as facial recognition and fingerprints. Fur-

thermore, ElectricAuth never reuses the same challenge twice in

authentications ś in just one second of stimulation it encodes one

of 68M possible challenges. In our user studies, we found that Elec-

tricAuth resists: (1) impersonation attacks (false acceptance rate:

0.17% at 5% false rejection rate); (2) replay attacks (false acceptance

rate: 0.00% at 5% false rejection rate); and, (3) synthesis attacks

(false acceptance rates: 0.2-2.5%). Our longitudinal study also shows

that ElectricAuth produces consistent results over time and across

different humidity and muscle conditions.

CCS CONCEPTS

• Human-centered computing → Human computer interac-

tion (HCI); Haptic devices; • Security and privacy→ Authenti-

cation; Biometrics.
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1 INTRODUCTION

Biometric authentication is a technique that identifies an individual

by their unique biological characteristics, such as their iris [85],

fingerprints [51], or even one’s voice [8]. To identify their users,

these interactive systems compare a previously stored biometric

key to incoming, typically real-time, biometric data of the user

wishing to authenticate. Compared to traditional password or PIN

based systems, biometric authentication offers significantly better

usability as it does not require users to memorize passwords or

PINs. As such, biometric authentication is getting widely adopted,

replacing passwords in many contexts [74].

However, the key feature of biometric authentication is typically

also its key flaw: once the biometric data is compromised (e.g.,

stolen in database breaches or recorded by an external attacker),

there is nothing the user can do to securely re-use their own data.

For example, if someone steals a user’s fingerprints, this user can

never trust a fingerprint-based interactive system. Unfortunately,

these threats are not theoretical and many biometric systems have

been breached. For instance, the biggest known biometric data

breach involved a database of 27.8M records, including fingerprints

and faces [30].

To tackle this shortcoming, researchers turned to interactive sys-

tems that feature a challenge-response as a form of active biometric

authentication. One example is Velody [40], which challenges a user

by vibrating her palm and measuring the user’s unique vibration-

response. The advantage of these systems is that, if the stored

challenge-response pairs are breached, the system can quickly re-

cover by simply asking the user to submit responses to a new set of

challenges. As such, researchers seek to find more modalities that

afford challenge-response biometric authentication.

In this paper, we propose and explore a novel modality for active

biometrics: electrical muscle stimulation (EMS). To understand and

evaluate the potential of EMS as a biometrics system for interactive

applications, we engineered a prototype that performs user authen-

tication via EMS. Our system, whichwe call ElectricAuth, stimulates

the wearer’s forearm muscles with an EMS-based challenge, i.e.,

a 1.2s long sequence of electrical impulses on four of the user’s

muscles. Then, it measures the user’s involuntary movements that

result from this EMS challenge. In Figure 1, we illustrate our system

with the example of authenticating a user in VR. Here, ElectricAuth

uses the VR headset’s hand tracking to observe the response of

the user’s muscles to the EMS-challenge as their individual finger

muscles are actuated.

ElectricAuth makes three key contributions in the design of

EMS-based biometric authentication.

First, ElectricAuth authenticates users by leveraging what is

typically seen as the biggest disadvantage of EMS: intersubject

variability, i.e., the same electrical stimulation results in different

movements in different users because everybody’s physiology is

different [11, 14, 17, 36, 53]. This unique response to EMS across

users is well-known and well-documented in the early HCI works

that pioneered the use of EMS in interactive devices, for instance:

"(..) stimulation level differed between users and was clearly depen-

dent on the muscle and fat level and thickness of the arm" (from

Kruijff et al. [39]) and, similarly, "(...) levels according to individual

variations" (from PossessedHand [79]). In fact, researchers in the

field of muscle-biomechanics and physiology demonstrated how

this uniqueness arises from multiple factors, such as differences

in muscle contractility [23], muscle elasticity [82], muscle viscos-

ity [13], the limb’s mass and shape [55], skin conductance [41],

bioimpedance [12, 70] and even nerve conduction [1]. All these dif-

ferences add up to create individual responses to the same stimulus,

which our system uses as the key feature to authenticate a user.

Second, ElectricAuth generates a very large pool of challenges

by exploring an underutilized property of EMS: muscles respond

differently depending on their current state of contraction, which

can be altered by varying the timing between two impulses. Us-

ing four muscles, six impulses and seven time gaps, ElectricAuth

encodes one of 68M possible challenges in 1.2s. As such, Electri-

cAuth is robust against data breaches and replay attacks because it

never reuses the same challenge twice in authentications ś Elec-

tricAuth rejects replay of recorded responses to any previously

used challenges, and can quickly recover from leak/breach of either

authentication model or stored challenge-response pairs by ask-

ing the user to register responses to a new set of challenges (like

registering new one-time passwords).

Finally, we evaluated our prototype of ElectricAuth by means of

four different evaluations, each shining light on a different facet of

our research question: (1) in our user studies, we found that Elec-

tricAuth offers accurate user verification and resists three common

biometric attacks: impersonation, replay and synthesis attacks; (2)

in our exploratory longitudinal study, we found that ElectricAuth’s

pre-trained authentication model performed stably over 21 days

against various muscle conditions (fatigue, humidity, etc.) that were

absent from the training data; (3) in our technical evaluation we

showed that ElectricAuth, after receiving a response, can verify the

user in 3ms on laptop’s CPU and 35ms on a small embedded device;

we also confirmed the use of depth camera as an alternative motion

tracking modality (since our prototype uses IMUs); and, (4) we

generated synthetic impersonator responses to test ElectricAuth’s

robustness against impersonation attacks at scales larger than our

user studies.

2 RELATED WORK

The work presented in this paper builds on the fields of wearables,

electrical muscle stimulation, and biometrics.

2.1 Electrical muscle stimulation

Electrical muscle stimulation (EMS) is a technique from medical re-

habilitation [76] that induces involuntary movements by delivering

electrical impulses to the user’s muscles. This is typically achieved

by non-invasive methods such as attaching pairs of electrodes to

the user’s skin (e.g., on top of the muscles that control finger move-

ment, located in the forearm). Electrode pairs are typically driven

using safe and medical compliant muscle stimulators [37].

The range of motion of an induced muscle contraction depends

on several key factors. Even in the very first interactive use of

EMS in HCI, by Kruijff et al. [39] in 2006, the potential causes of

EMS’ intersubject-variability were discussed: "(..) stimulation level

differed between users and was clearly dependent on the muscle
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and fat level and thickness of the arm (...)". Similarly, in Possessed-

Hand [79], Tamaki et al. also found "(...) stimulation levels accord-

ing to individual variations". In fact, researchers in the fields of

muscle-biomechanics and physiology have been investigating pre-

cisely which factors drive a muscle’s unique response to electrical

impulses, including: the location of the electrodes [68, 79]; the elec-

trical waveform characteristics, such as frequency and amplitude

of the impulses [39, 68, 79]; the target muscle’s contractility [23],

i.e., the ability of muscle fibers to shorten; muscle elasticity [26, 82],

i.e., the ability of the elastic tissue present in the muscle fibers to

return to its original length when a tensile force is removed; mus-

cle viscosity [13], i.e., the internal bio-lubrication of the muscle

inhibits the muscle from reacting too quickly to protect against

stretch injuries; the limb’s mass and shape [10, 11, 14, 17, 55]; skin

conductance affects non-constant current EMS devices [39, 41],

bioimpedance [12, 70]; and, even nerve conduction [1, 75], i.e., the

speed of nerve signal transmission. However, it is not possible

to precisely determine how much each factor weighs in the final

variability, as these are tied together in complex non-linear ways,

and this is still an open research question in muscle physiology.

More importantly, all the aforementioned factors are relevant to

our proposed technique since these vary-across users. Typically, a

combination of these explains the intersubject variability seen in

EMS-based interactive systems, which is why researchers report

long periods of calibration [44, 47, 77, 79] and even specifically

mention differences across users [39, 79].

Recently, researchers started to engineer interactive devices

based on EMS. These tend to fall into two broad categories: (1)

haptic devices that increase immersion/realism of virtual environ-

ments, and (2) interactive devices that facilitate information access

via proprioception. As far as interactive devices that increase im-

mersion, EMS has been used to render forces in mobile devices [43],

virtual reality [44, 47] or augmented reality [20, 48]. As a means

of general information access, EMS has been especially used for

haptic training (e.g., learning a musical instrument [79], operating a

tool the user is not familiar with [46]) or eyes-free communication

(e.g., communicating walking directions via leg stimulation [77],

communicating a state of a variable via wrist movements [45]).

Unlike these interactive systems that use EMS as a form of force

feedback or as an information channel, we explore EMS in a new

direction: leveraging user’s unique muscular responses to EMS as a

form of active biometric authentication.

2.2 Biometric authentication

Biometric authentication verifies an individual by their unique

biological characteristics. To verify a user’s identity, a biometric

authentication system compares a previously stored biometric key

from a particular user to incoming, typically real-time, biometric

data of the user wishing to authenticate. Compared to traditional

password or PIN based methods, biometric authentication offers

significantly better usability by not requiring the user to memorize

passwords or PINs.

Existing biometric systems can be categorized into two types:

passive and active biometrics.

Passive biometrics. Passive biometrics rely on physiological

characteristics that naturally occur in users, which can be either

static or dynamic. Static data, e.g., fingerprints [27], handprints [22],

facial and eye features [2, 51, 59, 85], is often used for authentica-

tion. Biometrics based on dynamic data recognize patterns that vary

over time, e.g., heartbeats [31], gait [78], mouse movements [32],

keystrokes [80], speech features [4], body movements [54, 62],

pulse-response [67] and bioimpedance [28, 70]. Compared to static

data, these display greater complexity and are harder to model.

Passive biometrics are vulnerable to data thefts and replay attacks

as reported by numerous incidents and studies [6, 18, 35, 57, 86ś88].

This is because the identity (also known as "key") associated with

each user is physically "hard-coded" and then used repeatedly for

all authentications. Thus after a key has been compromised (e.g.,

stolen from a database), an adversary can bypass authentication

until the key is replaced. Finally, there is a small number of available

biological traits per user that act as suitable keys, e.g., once all ten

fingerprints are compromised, this user can never again rely on

fingerprint authentication.

Active biometrics via challenge-response. Active biometrics

leverage a user’s physiological response to a given stimulus (also

known as "challenge") injected by the interactive device. The as-

sumption is that each user’s response to a given challenge is unique.

Thus, each challenge-response is effectively a biometric password.

Examples of challenge-response biometrics include leveraging: the

palm’s response to vibrations [40], reflexive eye behaviors in re-

sponse to visual stimuli [73], or even EEG responses [42]. These

systems authenticate implicitly so the user does not need to con-

sciously follow the challenge, e.g., the palm vibrates and the user is

authenticated [40].

Compared to passive biometrics, active systems are more robust

against data thefts and replay attacks. This is because each user can

potentially generate many challenges, each triggering a different

response. The system uses a new challenge in each authentica-

tion session, preventing attackers from using previously observed

responses to breach it.

Lastly, while many challenge-response authentication systems

leverage the user’s movement (e.g., gaze [66] or wrist shakes [60]),

these require explicit action from the user. Unlike these, our novel

exploration of EMS-based authentication provides the advantages

of movement-based challenge-response while automatically deliv-

ering the challenge and eliciting the user’s involuntary response.

3 IMPLEMENTATION

To help readers replicate our design, we provide the necessary

technical details. Furthermore, to accelerate replication, we provide

source code and training scripts1. Here, we describe in detail the

prototype we implemented for our user studies, which is based on

sensing the user’s movements using inertial measurement units

(IMUs). However, this is just one possible configuration for our

concept. As depicted in Figure 1, other tracking systems, such as

optical tracking [56, 84], are likely feasible alternatives.

3.1 System Overview

ElectricAuth consists of three components: (1) amedically-compliant

EMS device that delivers EMS challenges to the user, (2) amotion

sensor that captures the actuated limb’s movements, such as IMUs

1http://sandlab.cs.uchicago.edu/electricauth

http://sandlab.cs.uchicago.edu/electricauth
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electrodes

IMU sensors

Figure 2: IMU-based version of our EMS authentication sys-

tem, which we used for our user studies.

or depth cameras, and (3) a trained machine learning model

that classifies the user’s movements and performs authentication.

Figure 2 depicts one concrete implementation of our system using

EMS and IMUs attached to a user’s forearm, which we used for our

user studies.

1. EMS hardware.

EMS stimulator: For delivering EMS impulses we use the Ha-

somed Rehastim, a medical compliant device with eight individually

controllable channels. This device has often been used in interactive

systems based on EMS [47ś49]. To control the EMS stimulation,

our software sends serial commands via USB using the Hasomed’s

Science Protocol [24]. These impulses have a latency of <1ms.

Customized EMS sleeve: As with any device based on EMS,

we start by calibrating the electrode placement for each user at her

registration session. Our calibration aims at targeting four muscles

on the user’s forearm that actuate finger and wrist rotation. At the

anterior forearm we stimulate two muscle groups: (1) primarily the

flexor carpi radialis and partially the flexor digitorum profundus;

and, (2) the flexor pollicus longus. At the posterior forearm we

stimulate two muscle groups: (1) primarily the extensor digitorum

and partially the extensor digiti minimi, extensor pollicis brevis &

longus; and, (2) the extensor indicis. As is typical with EMS-based

systems, these electrode positions are adjusted for each user during

the registration session to ensure comfort. Because each user has a

different muscular anatomy and body shape, the resulting electrode

locations are different across different users.

After calibration, the resulting electrode layout for a particu-

lar user is fixed by making an EMS-electrode sleeve (fabric with

electrodes stitched to it) that this user wears any time they use

ElectricAuth. Moreover, the sleeve becomes part of each user’s

own challenge definition, i.e., an attacker trying to impersonate a

particular user will require obtaining or copying the user’s sleeve,

which we later validate in our studies by actually providing the

impersonators with the EMS sleeves of the legitimate users.

EMS parameters: Our EMS stimuli on all electrode locations are

the same: single-shot square-impulses with an intensity of 10mA

and a pulse-width of 200µs . We chose this configuration for two

reasons. First, we configured EMS impulses to generate small and

subtle finger movements rather than large conspicuous movements

typical of most existing EMS research, because this enables more

practical authentication scenarios. While these smaller movements

are harder to recognize, our results suggest that our authentication

model can accurately track these (see Section 7). Second, we opted to

make all impulses uniform to shine light in the fact that intersubject

variability in EMS arises from factors external to EMS waveform

characteristics.

Our EMS challenges are constructed by sequencing these stan-

dardized pulses to one of the four channels the user’s forearm is

connected to. For instance, one can construct a challenge with a

sequence of six impulses, each followed by a resting period. We

detail the engineering of our pulse sequences in Section 3.2.

2. Motion sensing.

We utilized a set of five 9-DOF inertial measurement units, attached

to the fingers via a 3D printed ring (NXP Precision 9DoF, comprised

of the FXOS8700 3-Axis accelerometer and magnetometer and the

FXAS21002 3-axis gyroscope). These sample the fingers’ accelera-

tion and rotation at 50Hz (post-sample interpolated to 100Hz) with

a precision of ±4g at 14-bit for acceleration and ±250°/s at 16-bit

for rotations; note that we do not use the magnetometer. These

IMUs are sampled by a ATSAMD21G18 ARM Cortex M0 48 MHz

processor, via a TCA9548A I2C Multiplexer. Finally, our sensing

board relays the IMU data via serial over USB to our software.

While attaching IMUs to each finger has been shown to be a reli-

able way to capture hand pose [15, 29], we believe many alternative

tracking systems are possible to realize EMS-based authentication,

such as depth cameras [72, 84], RGB cameras [9, 71], and others [34].

We provide a short evaluation that confirmed the use of depth cam-

eras as an alternative tracking system in Section 9.

#1

#2

#n

EMS challenges

...

ba registration authentication

(i) send a random 
challenge and

delete it immediately

(1) send all
challenges

#1

#2

#n

...

motion responses

(3) build 
 a model

real time response

decision

grant / deny

(2) capture
responses (ii) capture

response

(iii) feed to 
the model

(iv) inference

authentication

model

Figure 3: Interactive pipeline for the registration (register-

ing a new user) and authentication phase (interactive use in

runtime). User response can be caputured using a motion

capturing device, e.g., IMUs and cameras (not shown). In this

system, the EMS device and electrodes are wearable; the mo-

tion capturing device is either wearable or placed near the

user; while the authentication model can be remote.
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3. Authentication software and pipeline.

The software component of ElectricAuth, written in Python, han-

dles all the interactions between EMS device, motion sensing, model

training and real-time authentication. The pipeline of ElectricAuth,

which is depicted in Figure 3, is comprised of two phases: (a) regis-

tration and (b) authentication.

In the registration phase, marked by solid lines in Figure 3,

registering a new user (after calibration) is as follows: (1) a set of n

EMS challenges are sent one at a time; (2) the user’s movements

in response to each challenge are recorded; (3) these responses are

used to train a machine learning-based authentication model for

this user. The number of challenge-response recorded per user is

the primary factor that dictates the total time the system needs for

registering a single user (we detail this in Section 4).

In the authentication phase, marked by dashed lines in Figure 3,

verifying a user’s identity in run-time is as follows: (i) one random

EMS challenge belong to the claimed identity is chosen, deleted

immediately from the database, and sent to the user via EMS; (ii)

the user’s movements in response to the challenge are recorded;

(iii) the motion responses are fed into the trained authentication

model of the claimed identity; (iv) the system determines whether

this user is legitimate (i.e., being the claimed identity) or not.

3.2 Engineering EMS-based Challenges

As our system is the first that explores EMS for authentication, we

dedicated a significant part of our exploration in understanding how

to increase the challenge pool using EMS; a large challenge pool

is what makes a challenge-response based authentication system

robust against data breaches and replay attacks. Naively, one can

stimulate the user’s muscles with individually configurable pulses;

however, this (1) requires more calibration time and (2) does not

reveal the mechanisms that explain these individual responses.

Therefore, we kept purposely all EMS impulses uniform for all users

of our system; this grants us more confidence in interpreting the

unique responses as originating from the physiological differences

between users. Yet, this introduces a challenge when it comes to

diversifying the challenge pool.

One straightforward solution (adopted by many existing works

on challenge-response biometrics [40, 42, 73]) is to sequence stimuli

but separate them by a fixed time gap. If we were to adopt this as

well, the maximum number of EMS challenges would be SL , where

S is the number of unique stimuli in the system and L is the number

of stimuli in each challenge. For example, a sequence of six EMS

impulses over four possible EMS channels, with a fixed rest period

between each impulse, results in 4
6
= 4, 096 challenges. We were

interested in whether we could dramatically surpass this approach.

To significantly increase our challenge pool, we explored a rather

unused property of human muscles that causes them to respond

differently to EMS depending on their current state of contraction.

We call this temporal dependency.

Temporal dependency. We empirically found, in our prelimi-

nary pilots, that a subject’s response to an EMS stimulus is affected

by the previous stimulus in the same challenge, and the impact

depends on the time gap between them (represented as τ ).

0.00s 0.20s 0.40s 0.60s

10

15
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o
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(m
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2
)

τ=0.10

τ=0.17

Figure 4: An example of how a response changes when the

time gap between two EMS stimuli varies: we vary the time

gap from 0.1s (blue curve) to 0.17s (orange curve).

Figure 4 shows two example traces of a finger’s acceleration

when we stimulate the user’s muscles with a sequence of two stim-

uli (A and B) but vary the time gap between A and B (i.e., τ = 0.1s

and τ = 0.17s). The measured acceleration displays different charac-

teristics whenwe vary τ . The strongest candidate for a physiological

explanation is that muscle contractility and elasticity vary with

muscle length [21, 81], and the response to a stimulus depends on

the muscle lengths at the time of stimulation. Thus, depending on

the gap between A and B, the subject’s unique contractility [23]

and elasticity [26, 82] will lead to different responses.

The use of temporal dependency affords a large EMS challenge

pool by varying the time gaps between consecutive stimuli. As-

suming they all produce distinguishable responses, the number

of unique challenges (of length L) is upper bounded by SL ·T
L−1,

where T is the number of distinct time gaps. For our ElectricAuth

prototype, we utilize S = 4 EMS channels and T = 7 different time

gaps (τ = 1

30
s, 2

30
s, ..., 7

30
s), which in early pilots we found to lead to

sufficiently different movement outcomes. The maximum number

of unique challenges is 112 (L=2), 87, 808 (L=4) or 68, 841, 472 (68M)

(L=6), compared to 16 (L=2), 256 (L=4) or 4, 096 (L=6) when we do

not vary the time gap.

Further increasing the challenge pool. Encoding longer chal-

lenges is another way to expand the challenge pool. With S = 4

stimulus locations and T = 7 time gaps, sending L = 8 pulses (<2s)

increases the pool size to 53, 971, 714, 048 (48 × 7
7). Also it is possi-

ble to add more electrodes or customize EMS impulses to further

diversify the pool.

Checking for uniqueness. Ideally, every challenge-response

authentication in the pool is unique. However, in practice this might

not be the case given the granularity and sensitivity of motion

sensors. To enforce uniqueness, ElectricAuth can apply a verifi-

cation step during user registration. Specifically, after generating

new challenges for a user at the registration phase, it collects the

corresponding responses and checks the similarity across these

responses and previously registered responses (e.g., computing the

mean square error (MSE) between raw responses). If a new chal-

lenge is identified as a previously registered challenge, this new

challenge is removed.

4 USER AUTHENTICATION MODEL

We now present the design of ElectricAuth’s user authentication

model. ElectricAuth requires a trained authentication model per

legitimate user, which is used to verify whether a test subject is

indeed that user. To do so, the model takes as input the response

to a given challenge designed for the legitimate user, and outputs

whether the test subject is legitimate. Our authentication model



CHI ’21, May 8–13, 2021, Yokohama, Japan Yuxin Chen, Zhuolin Yang, Ruben Abbou, Pedro Lopes, Ben Y. Zhao, and Haitao Zheng

was designed with two objectives in mind: (1) minimize the amount

of samples collected from the user (i.e., reducing registration over-

head) and (2) resist common attacks (e.g., impersonation and replay

attacks) and data breaches.

4.1 Overview

Initially, we explored implementing our model using specific fea-

tures of the user’s IMU data in response to particular EMS chal-

lenges (so called feature-engineering). However, we quickly realized

a major downside of this approach: as the response data we cap-

ture in real-time from the IMUs is complex (thirty concurrent data

streams: 5 × 3 axes of acceleration and 5 × 3 axes of rotation), sim-

ple feature extraction might not capture the full expressivity of the

data. Therefore, after experimenting with this approach, we turned

to neural network based models.

We implemented a robust authentication model that, for each

registered user, integrates two deep neural network (DNN) models

to resist both impersonation and replay attacks. Specifically, au-

thentication starts with (1) an unsupervised anomaly detector,

which verifies whether a response was produced by the user the

model belongs to (i.e., the legitimate user); this step prevents imper-

sonation attacks, in which a different user attempts to gain identity

of the legitimate user. If a response passes the anomaly detector, it

then enters (2) a challenge classifier, which detects and rejects

replay attacks by verifying whether the response is the reaction to

the challenge used in the current authentication session.

Both models are trained using only the challenge-response pairs

of this legitimate user collected during registration. When the user

(re)registers a new set of challenges, we retrain both models from

scratch using the new data. This also enables ElectricAuth to recover

from data and model breaches.

4.2 Detailed Model Design

1. Verifying user via unsupervised anomaly detection.

We implement user verification as unsupervised anomaly detec-

tion [7], where the detection model is trained on only the legitimate

user’s responses collected during registration. At run time, the

model verifies whether an input response was likely originated by

the legitimate user. This anomaly-based detector leverages the fact

that responses from other users will display characteristics different

from those of the legitimate user. Thus the model is designed to

produce normal output when the input response comes from its

legitimate user, but abnormal output when the input comes from

any other user. This design prioritizes generality as the model is

trained without requiring knowledge on other users.

For our prototype, we apply a reconstruction error based anom-

aly detection system [63]. Specifically, we use variational autoen-

coder (VAE) [16], a DNN architecture well-known for automatically

capturing complex patterns in target data. As shown in Figure 5,

each VAE starts from an encoder to extract latent features from each

input response, followed by a decoder to reconstruct the response

from these features. It then computes the mean squared error (MSE)

between the input and reconstructed responses, and outputs it as

the anomaly score of the input. Ideally, the anomaly score will

be low when the input response comes from the legitimate user

and high when the input comes from a different user. Thus, the
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Figure 5: Authentication starts with an anomaly detection,

which verifies if a response came from the legitimate user

that themodel belongs to (P1 in this example). (a) The anom-

aly score is theMSE of the input andmodel-reconstructed re-

sponses. We illustrate how our anomaly detector correctly:

(b) identifies P1 (legitimate user) with a low MSE and (c) re-

jects P2 (impersonator) with a high MSE.

system can configure a threshold on the anomaly score, where a

value larger than the threshold indicates the test subject is not

the legitimate user (i.e., the user verification fails). In ElectricAuth,

we choose the threshold during model training to reach a desired

false rejection rate (i.e., the probability that the model rejects the

legitimate user’s input responses).

For our implementation, we train our VAE using each legiti-

mate user’s responses to all the chosen challenges collected during

registration. The data aggregation (across challenges) creates a rea-

sonable amount of data to train the VAE successfully. We consider

a common VAE architecture [19], where the encoder contains two

dense layers of 400 and 200 neurons, respectively, and the decoder

contains two dense layers of 400 and 3600 neurons, respectively, to

match the input size.

To illustrate the effectiveness of our model, we plot in Figure 5b-c

the input and reconstructed responses of a legitimate user (here,

P1 of our user study) and a different participant P2 (also from

our user study), respectively, using the model trained for P1. For

the sake of visual clarity, we only plot the responses from only

one accelerometer axis. Both responses are not used for model

training. We see that P1’s response is well-approximated by the

model-reconstructed response; in fact, with a very lowMSE of 0.057.

On the other hand, P2’s response (when tested on P1’s model),

produces a large MSE of 0.604, around 10-fold higher than the MSE

of the legitimate user (P1).

Figure 6 shows the responses (collected by the IMUs) of five

subjects (P1-5) to a challenge designed for P1 (the legitimate user

in this case). When tested on P1’s anomaly detection model, the

anomaly scores for these responses are 0.70, 5.03, 9.44, 8.81 and 7.50,

respectively. Thus P1’s model easily rejects P2-5 as impersonators.
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Figure 6: Sample responses of a P1’s challenge (with L=6 impulses) and impersonators’ responses (P2, P3, P4 and P5) to the

same challenge. Each row is a sensor channel and each column is one data sample. Here we show one second of responses.

When tested on P1’s anomaly detection model, the corresponding anomaly scores for P1-5 are 0.70, 5.03, 9.44, 8.81 and 7.50,

respectively. In this case, the model can easily detect impersonators.

2. Verifying challenge via challenge classifier.

Next in the authentication pipeline, ElectricAuth verifies whether

the input responsematches the challenge used in the current session.

As mentioned earlier, this is designed to resist replay attacks, where

an attacker, after obtaining a copy of the legitimate user’s responses

to previously used challenges, replays one of these responses to

bypass authentication.

ElectricAuth implements challenge verification by training a

classifier: given an input response, it determines the corresponding

challenge. If the identified challenge matches the challenge used

in the current authentication session, authentication is granted;

otherwise, rejected. Moreover, the classifier also detects when the

input response comes from any challenge not used to train the

classifier, because the classifier will output a low confidence score.

Our implementation uses a Convolutional Neural Network (CNN)

for this classification task [58]. It contains four convolutional and

two dense layers. Each convolutional layer employs 64 filters sized

5 to extract information from the input. The information is then

fed into the two dense layers containing 128 and 112 neurons, re-

spectively. At the end, a softmax function is applied to the output

to produce a probability distribution over potential challenges. We

train our CNN using the same training data used in training the

above anomaly detector, except that we now label each response

by its corresponding challenge.

5 CONTRIBUTIONS, BENEFITS AND
LIMITATIONS

Our main contribution is that we explore EMS in a new direction,

i.e., leveraging EMS’s intersubject variability as a novel modality

for active biometric authentication.

ElectricAuth inherits the advantages of both biometric and pass-

word authentication: (1) As with any biometric authentication de-

vice, ElectricAuth does not require memorization or cognitive effort

ś this makes our system suited for a wide range of users, including

those with cognitive impairments; (2) Unlike passive biometrics

(such as fingerprints), ElectricAuth’s challenge-response structure

makes it secure against data breaches and replay attacks; Lastly,

(3) ElectricAuth leverages temporal dependency to create a very

large set of challenges ś in this way, ElectricAuth can dispose a

challenge anytime like a one-time password.

On the flipside, ElectricAuth is subject to several limitations: (1)

Like any solution based on electrical muscle stimulation, Electri-

cAuth requires some initial adjustments of the electrodes (during

registration) that ensure pain-free operation, and also periodic re-

gelling of adhesive electrodes to prevent electrodes from fatigue

and eventually affecting the authentication accuracy; (2) Electri-

cAuth requires user’s hands to be free while authenticating, making

it more suitable for hands-free applications; (3) As with existing

biometric devices, ElectricAuth requires initial registration. Specifi-

cally, each challenge needs to be registered in advance; Lastly, (4)

while a single EMS impulse can be very short (e.g., 200µs) to achieve

very high accuracy, we expanded our sequence to 1.2 seconds of

muscle stimulation, as such ElectricAuth takes ∼1300ms to authen-

ticate a user in runtime. While this is certainly fast enough for most

applications, it is longer than some passive approaches, such as

fingerprint recognition.

6 OVERVIEW OF EVALUATIONS

We evaluated our concept of using EMS for authentication bymeans

of four different evaluations, each shining light on a different facet

of our research question. All studies were approved by our Institu-

tional Review Board (IRB no. omitted for anonymity). To aid the

reader in understanding the different validations we performed,

we present an overview of our evaluations with a preview of their

respective results:

I. User studies. We evaluated the feasibility of EMS as an active

biometric with three experiments and 13 participants.We found that

that ElectricAuth resists three common attacks: (1) impersonations

attacks, in which participants played impersonators against each

legitimate user (attack success rate or false acceptance rate: 0.17%);

(2) replay attacks, in which participants mimic the movements of

the legitimate user from videos (success rate: 0.00%), or replay a

perfect record of response to any used challenges directly into

the IMUs (success rate: 0.00%); and, (3) synthesis attacks, in which

we synthesized data from the participants’ data to attack their

authentication models (success rate: 0.2-2.5%).

II. Exploratory longitudinal study. We conducted a longitudi-

nal study over 24 days and for two participants, to examine Electri-

cAuth’s authentication model over time and against various muscle

conditions (fatigue, humidity, etc.). We found that an authentication
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model, trained using the first three days and tested over the next

21 days, performed very stable over time and on muscle conditions

unseen during training (false rejection rate ≈2%, with a SD around

3%).

III. Technical evaluation. A technical in which we measured

ElectricAuth’s latency, model training time, and the feasibility of

using depth cameras as an alternative motion tracking modality.

IV. Testing model robustness at scale, using synthetic data.

We applied a data-driven approach to better understand how our

system might scale to larger numbers of users that is simply imprac-

tical to test in the laboratory. To realize this, we employed the user

study data to train deep generative models that produce synthetic

impersonator responses, and used these data to further evaluate

ElectricAuth. We found that, across all the data-driven experiments

and for all legitimate users, no generated response was accepted by

ElectricAuth (attack success rate: 0).

7 USER STUDIES

To evaluate the feasibility of EMS as an active biometric we con-

ducted a user study, with three sub-experiments, which allowed

us to understand: (1) authentication accuracy, in which we eval-

uated the accuracy of our system; (2) impersonation attack, in

which we evaluated its robustness against attackers trying to im-

personate legitimate users; and, (3) replay attack and synthesis

attack, in which we evaluated its robustness against three replay

attacks (human mimicry, record-replay, breach-replay) and one

online synthesis attack.

In total, we collected 70,000+ wrist and finger movements as

responses to EMS challenges (stimulation patterns). We analyzed

the performance of ElectricAuth using four standard metrics, typi-

cally employed to assess a system’s authentication performance:

(1) False rejection rate (FRR), which measures how often a legit-

imate user is mistakenly denied, at a specific threshold; (2) False

acceptance rate (FAR), which measures how often an illegitimate

user is mistakenly authorized, at a specific threshold; (3) Equal

error rate (EER), the rate at which the measured FRR equals the

measured FAR for a certain threshold; and, (4) Receiver operator

characteristic curve (ROC curve), which describes the relation-

ship between FRR and FAR as a curve, by varying its threshold.

7.1 Experiment#1: Authentication Accuracy

The goal of our first study was to understand the authentication

accuracy of our system. Furthermore, as we were interested in the

impact of the length of the EMS challenges on its performance,

we recorded participants’ movements to three sets of challenges,

based on their number of impulses L = 1, 2, 6 (referred to as length-

1, -2, and -6 challenges, respectively). For each challenge set we

stimulated participants’ forearms and recorded finger movements

using IMUs.

Participants. We recruited 13 participants from our institution

(mean age= 24 years, SD= 3 years; mean weight= 66.3 kд, SD=

13.3 kд; mean height= 171.2 cm, SD= 8.2 cm; 7 females, 6 males).

Participants were compensated with 50 USD for their time.

Apparatus. Participants wore our system on their left forearm.

This included the EMS and IMU components, which were fitted

by an experimenter. To ensure participants’ comfort with EMS,

we calibrated it so that all electrode channels operated pain-free.

To ensure that all target muscles were correctly stimulated (see

Implementation for details), we gradually increased the intensity

during calibration, following calibration process similar to [5]. If

a participant felt any discomfort before reaching the target inten-

sity, we moved to another electrode position. To minimize fatigue,

participants rested their elbow on a resting base.

After calibration, we recorded each participant’s exact electrode

locations by making a custom sleeve with marked positions. These

13 sleeves were later used in Experiment #2, where we examined

impersonation attacks (i.e., each impersonator wore the sleeve of a

legitimate user to attack our authentication system).

During the study, participants did not receive any specific in-

struction, since we wanted them to react naturally to the EMS

impulses.

EMS challenges. The EMS challenges in our study were config-

ured as previously described, i.e., a challenge was comprised of a

sequence of single-shot square-impulses with an intensity of 10mA

and a pulse-width of 200µs ; these sequences were of length-1, -2 or

-6. In between each pair of impulses we included a time gap. Each

gap was one of seven possible durations ( 1
30
s, 2

30
s, ..., 6

30
s, 7

30
s); thus,

the recording duration of a length-1, -2, and -6 challenges were

0.6s, 0.8s and 1.2s, respectively. While length-1 challenges were

collected in this experiment, these were only used for an analysis

in Experiment#2 (anomaly detector performance).

Procedure. To test whether ElectricAuth correctly authenticates

our 13 participants, we first registered each participant. Our system

did this automatically: (1) a participant feels an EMS challenge,

(2) their forearm muscles react involuntarily, and (3) our system

records the response. We repeated this process 10 times per chal-

lenge. These ten responses were shuffled to remove potential se-

quence effects. These responses were then randomly divided into

a training set (eight responses) and a testing set (two responses).

Then, our system took these eight responses (for all challenges) and

trained the anomaly detector and challenge classifier for each par-

ticipant. As cross-validation, we repeated this process to produce

10 authentication models per participant and reported the average

test results of these models in all our subsequent experiments.

For length-1 and -2 challenges, we tested the full set of challenges

(a total of four for length-1 and 112 for length-2). For length-6

challenges, we were forced to test only a subset, since the full

set includes 68, 841, 472 challenges, which would be fatiguing for

participants. Therefore, we randomly chose 115 challenges from

the full set.

In total, each participant performed 2310 trials: 40 trials of the

four length-1 challenges (10 repetitions); 1120 trials of the 112

length-2 challenges (10 repetitions); and, 1150 trials of the 115

length-6 challenges subset (10 repetitions).

Results: overall authentication accuracy. We first examine

the accuracy of the end-to-end authentication model, which de-

pends on the accuracy of both the anomaly detection model and

the challenge classification model. We defined overall accuracy

as the probability that a legitimate response successfully passed

the two-step authentication. Note that the accuracy is dependent

on the anomaly threshold used by ElectricAuth’s authentication

model. During model training, we configured the threshold to reach
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P6 2.7 6.2

P7 2.5 5.0

P8 2.3 5.5

P9 3.2 5.8

P10 2.2 5.0

P11 2.3 5.0

P12 2.8 5.5

P13 2.6 5.4

AVG(SD) 2.4(0.4) 5.4(0.4)

participant

planned FRR

2% 5%

P1 2.3 6.1

P2 2.1 5.5

P3 2.1 4.9

P4 1.7 5.4

P5 2.6 4.8

Table 1: Themeasured false rejection rate (FRR, %) for all reg-

istered participants (P1-P13) closely matched the planned

FRR. Themeasured FRRwas calculated for each participant

using their test responses to 115 length-6 challenges.

a planned false rejection rate (FRR). Note that the threshold is de-

termined using just the training data (without the knowledge of

any run-time testing data). Ideally, the run-time measured FRR (i.e.,

1−accuracy) should equal to the planned FRR.

For each of the 13 registered participants, Table 1 summarizes the

measured FRR (i.e., = 1−accuracy) aggregating the results across

all 115 challenges (of length 6). Here we reported the results for

planned FRR of 2% and 5%. We see that the measured FRR closely

matched the planned FRR. Across all the participants, the mean

measured FRR is 2.4% (SD of 0.4%) and 5.4% (SD of 0.4%), respectively,

matching the two planned FRR values (2% and 5%).

Results: challenge classification accuracy. Digging deeper

into the accuracy of our system, we turn to evaluate the accuracy of

challenge classification model (as it is the main component protect-

ing against replay attacks). Our accuracy findings are depicted in

Figure 7. For length-2 challenges (complete set, i.e., 112 of them) the

average accuracy is 99.89% (SD=0.19% across users). And for length-

6 subset of challenges we found an accuracy of 99.78% (SD=0.50%).

These results also show that the challenges (full set of length-2,

subset of length-6) are unique across each other.
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Figure 7: ElectricAuth’s challenge classification accuracy for

length-2 and length-6 challenges.

7.2 Experiment#2: Impersonation Attacks

In this user study, we measured our system’s ability to resist im-

personation attacks.

Participants. For this study, we invited all 13 participants from

Study#1. Participants were briefed that they would play an attacker

trying to impersonate other participants. Participants were com-

pensated with 50 USD for their time.

Procedure & apparatus. For each target participant, we applied

their customized challenges (used in Experiment #1) to the other 12

participants (as impersonators) and collected their responses. Im-

personators were asked to wear the sleeve fabricated for each target

participant in Experiment #1. These sleeves grant the impersonator

with the exact electrode positions of the legitimate user. We also

tested cases where impersonators wear their own sleeves and other

participants’ sleeves and found that wearing the target participant’s

sleeve leads to the most effective attack; thus we focused on it.

In total, each participant performed 3240 trials: 480 trials of the

length-1 challenges (10 repetitions per challenge, impersonated 12

other participants); 2760 trials of the length-6 challenges subset (2

repetitions per challenge, impersonated 12 other participants).

Impersonating someone else by using their electrode placement

does not guarantee comfortable use, i.e., we did not adjust elec-

trodes to preserve the legitimate participant’s placement. While no

participant felt uncomfortable with length-1 challenges, there was

some discomfort on a few length-6 trials (3.8% of the total); anytime

a participant voiced discomfort, we stopped the stimulation and

discarded this trial.

Results: performance of anomaly detector. To deepen our

understanding of intersubject variability and the anomaly detection

model performance, we first compared the responses to a single

stimulus (or length-1 challenge), submitted by each target partici-

pant in Experiment#1 and the 12 impersonators in this experiment.

We fed these responses to the target participant’s anomaly detection

model and recorded their anomaly scores. For the sake of visual

clarity, we normalized these anomaly score values by the target

participant’s average anomaly score value (see Figure 8).
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Figure 8: Normalized reconstruction error for the responses

to each participant’s length-1 challenges, submitted by both

the legitimate user and the 12 impersonators. For visual clar-

ity, we capped the value at 10.

We found that our anomaly detector for each participant is well-

trained and can distinguish impersonators from the legitimate par-

ticipant. This is clear as Figure 8 depicts a large separation between

the legitimate participant and the impersonators. It also confirms

EMS intersubject variability.

Results: robustness against impersonation attack. We ex-

amined the end-to-end success rate of impersonation attacks against

each participant, using the attack data collected on length-1 chal-

lenges (complete set) and length-6 challenges (the 115 subset).

Figure 9(a) depicts the false acceptance rate (aggregated across 13

participants’ models since they are consistent) against length-1 and

length-6 challenges, for the planned FRR of 2% and 5%, respectively.

With length-1 challenges (4 challenges), the impersonation attack

failed. With length-6 challenges, the attack exhibited a very low

success rate, only 0.83% (SD=1.14%) at planned FRR=2% and 0.17%

(SD=0.32%) at planned FRR=5%. Again this suggests that our sys-

tem is robust against impersonation attacks. Figure 9(b) shows the
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a false acceptance rate (FAR) on impersonators for length-1 
and length-6 challenges

ROC curves on impersonators for length-1 and -6 challengesb
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Figure 9: ElectricAuth’s robustness against impersonation

attacks.

ROC curves under impersonation attacks with length-6 challenges,

where ElectricAuth achieves an EER of 1.31%.

7.3 Experiment#3: replay and synthesis attacks

In this user study, we measured ElectricAuth’s robustness against

replay attacks and synthesis attacks, both trying to engineer a

response to bypass authentication after obtaining some knowledge

on the legitimate user’s responses.

We considered three replay attacks, and one synthesis attack,

ranging in increased attack complexity:

(1) human mimicry, where the attacker video-tapes and studies

a participant’s responses and then physically mimics the responses

without wearing any EMS;

(2) record-replay, where the attacker compromises the IMUs so

that they can perfectly record the target participant’s response to

challenges in previous authentication sessions, then during a new

authentication session (i.e., a new challenge), the attacker selects a

previous recorded response and directly feeds it to the IMUs;

(3) breach-replay, where the attacker breaches the database or

the model to recover stored challenge-response data, and feeds one

response to the IMU’s circuit; here ElectricAuth reacts to the breach

by asking users to re-register using new challenges and retraining

the models;

(4) online synthesis, where the attacker compromises both EMS

and IMUs to record both the challenge and the response in previ-

ous sessions; then at run-time, the attacker searches through these

records and attempts to synthesize and submit in real-time an en-

gineered response to the current challenge. For these attacks, we

evaluated ElectricAuth using the false acceptance rate (FAR) and

the ROC curve.

Participants. We recruited five participants to perform the hu-

man mimicry attack: three from our previous study (chosen at

random) and two new participants from our local institution (ages:

25 & 22 years old; weights: 55 & 99 kд; heights: 177 & 180 cm; one

female and one male). Participants were compensated with 50 USD

for their time.

Procedure. In the human mimicry attack, we asked partici-

pants to study 23 videos of finger movements of a target participant.

Each video was a recording of one single response to a length-6

challenge. Participants were allowed to study these videos as many

times as they intended and in slow-motion (recorded at 240 fps,

with clear and unobstructed view of the finger movements). Once

confident and ready, participants were asked to mimic these finger

movements while wearing only the IMU component of our system,

in their best attempt to impersonate the target participant. Fur-

thermore, as reference, we also asked the target participant that

had partaken in Experiment#1 to self-mimic 23 of his own EMS

responses after observing and studying them.

Results: robustness against human mimicry. We found that

none of the study participants was able to fool our system by mim-

icking the target participant’s responses. Note that these partici-

pants were allowed to view the videos in slow motion and as many

times as they want. The FAR was 0 for a FRR ≥ 2%. This confirms

our intuition that the EMS movements are indeed involuntary and

incredibly hard to voluntarily replicate.

Results: robustness against record-replay attack. For this

we utilized data from Experiment#1. Even assuming perfect record-

ing on the side of the attacker (i.e., their recording channel has

access to IMUs without any noise or sample rate issues), we found

our system to be robust against these attacks. In particular, for

length-6 challenges, the FAR (against any of the 115 challenges)

was less than 0.0014% across all 13 participants when FRR ≥ 2%. This

FAR is significantly smaller than the challenge misclassification

rate of our authentication model (0.2%, see Experiment#1).

Results: robustness against breach-replay attack. Again we

utilized data from Experiment#1. For each participant, we randomly

split the 115 challenges (and their responses) into two equal sets (A

and B). We assume that the attacker, via data breach, obtains the

dataset A and uses them to launch replay attacks against Electri-

cAuth. At the same time, ElectricAuth reacts to the data breach by

asking users to re-register via a set of new challenges (i.e., dataset

B) and retraining the authentication models using dataset B. Like

the above, we found our system to be robust against these replay

attacks ś the FAR was less than 0.0098% when FRR ≥ 2%. Moreover,

both the anomaly detector and challenge classifier components in

the model were able to reject the attack responses.

Results: robustness against online synthesis. We evaluated

the success rate of an online synthesis attack, using the data from

Experiment#1. We assume the attacker has access to the EMS and

IMUs without sample rate or noise issues, which is in itself very

unlikely. The idea behind a synthesis attack is that the adversary

records both challenges and their responses, and segments these

into chunks, as in "this impulse at electrode 1, moves this finger

by this much", and so forth. We referred to this approach as the

simple synthesis attack. A more advanced attack would capture the

impact of temporal dependency by segmenting responses into per

pair-stimuli chunks, as in "these two impulses at electrodes 1 and 2,

move these fingers by this much"). After segmenting the responses,

the attacker will observe each incoming impulse of a new challenge

and inject a response into the IMUs in real-time. Note that even
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Figure 10: ElectricAuth’s robustness against different replay

and synthesis attacks. For online synthesis, the attacker had

perfect records on responses to 50 challenges. Here Electri-

cAuth operates on length-6 challenges.

assuming best hardware and knowledge, assembling this response

will always have some latency.

Figure 10(a) plots the FAR of online synthesis attacks considering

three latency values, assuming the attacker has observed R=50

challenge-response pairs and the planned FRR is set to 5%. Even

under the extreme attack case (zero latency, which is physically

impossible), the attack success rate is low (i.e., FAR=2.2% and 7.5%

for simple and advanced attacks, respectively). When the synthesis

latency reaches 20ms, which still depicts an unlikely extremely fast

response, the FAR drops to 0.1-0.2%. The same applies when we

raised R to 75 (i.e., the advanced attack’s success rate is only 0.25%

for latency=20ms).

Results: ROC and EER. Finally, Figure 10(b) plots the ROC

results for all the replay attacks and synthesis attacks (with latency

=20ms). We see that ElectricAuth achieves noticeable EERs only

for the synthesis attacks (1.48% for simple synthesis and 1.59% for

advanced synthesis). These results show that ElectricAuth is robust

against replay and synthesis attacks, even those extreme ones.

8 EXPLORATORY LONGITUDINAL STUDY

We conducted an exploratory longitudinal study to examine Elec-

tricAuth over time and against various environment and muscle

conditions. Specifically, we performed fixed-model-over-time

tests, which depicts how an authentication model trained using

the first three days of data will perform over time and under muscle

conditions (e.g., humidity, fatigue, etc.) and other non-predictable

environmental factors that were not present in the training data;

Participants. Due to Covid-19, only two co-authors participated

in this study (ages: 25 & 24 years old; weights: 70 & 54kд; heights

170 & 163cm; one male and one female).

Procedure. In the day prior to the start of the 24-day period, we

conducted an initial calibration session (following the same method

and apparatus described in Experiment #1). Then, we followed with

24 days of data collection. We collected data once a day. For each

participant, we randomly chose 115 length-6 challenges to collect

user responses.

For this study, we used fabric sleeves with embedded EMS elec-

trodes at the precalibrated positions for each participant, following

a design similar to [36]. Each day, participants were asked to wear

their custom electrode-sleeves (depicting their calibrated locations).

Participants fitted the sleeve by themselves prior to the trials by

aligning markings on the sleeve with their elbow and top of wrist.

If the electrode pads were dry, they re-gelled it using conductive

gel. Then, they recorded their response to the 115 challenges every

day. For each challenge, they collected more than 6 responses per

day. After the trials, they removed the sleeve until the next day.

Conditions. To explore the impact of environmental and physio-

logical variations, we conducted data collection under combinations

of three conditions: (1) time of the day (morning/afternoon/late);

(2) environment humidity (dry/damp); and (3) muscle fatigue (nor-

mal/fatigued). We randomly chose one combination per day, and

each combination was tested at least twice during the study. In the

damp condition, participants were asked to stay in their bathroom

with the humidity at over 80% and temperature over 29 ◦
C for more

than 20 minutes right before the data collection. For dry condition,

participants stayed in an air-conditioned room of humidity 55%

and temperature 24
◦
C . To test our system right after the muscles

started to fatigue, participants were asked to do a routine of intense

forearm muscle training (dumbbell wrist flexion and extension) for

a minimum of 15 minutes before collecting data.

During the days in which we tested ElectricAuth under nor-

mal muscle conditions, participants still performed their forearm

muscle training but after the data collection session. This allowed

us to study if extended muscle exercise would affect the system

performance.

Training the authentication model. For each participant, we

used data collected in the first three days to train the authentication

model (the anomaly detector and challenge classifier). For both

participants, the training data were collected under the same (dry,

pre-workout) condition. The rest of the data (21 days) were used

for testing our authentication models. The testing data contained

conditions both seen or unseen in the training data. We excluded

day 10 and 11 for participant 1 due to need for replenishing the

sticky gel on the electrodes, i.e., waiting for gel supply.

For all the trained models, we configured the anomaly detection

thresholds to achieve a planned FRR of 2%. As discussed before,

such configuration is set using only the training data without the

knowledge of any testing data.

Results: fixed-model-over-time tests. To understand the im-

pact of a specific condition (time of the day, environment humidity

or muscle fatigue), Fig. 11(a)(b) shows the measured false rejec-

tion rate (FRR) under each condition. For both participants, the

measured FRRs are reasonably consistent across conditions and

closely match the planned FRR (2%). But more importantly, while

our authentication models are trained only under the combination

of dry and pre-workout conditions, they remain accurate under

other conditions not seen during training. This provides initial

evidence on the generality of ElectricAuth.
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Figure 11: Results of fixed-model-over-time tests. (a) and (b) shows for both participants, our system is stable under various

conditions; (c) our system is stable over time (21 days) for both participants.

For both participants, we also plot the mean FRRs over time in

Fig. 11(c). We see that the FRR is stable over time, (mean=2.01%,

SD=3.13%) for participant 1 and (mean = 1.76%, SD=2.90%) for par-

ticipant 2. No significant performance degradation over time was

found for both participants. These results suggest that ElectricAuth

remains relatively stable on a monthly scale.

9 TECHNICAL EVALUATION

We deepened our understanding of how future interactive systems

might be built based on EMS authentication by measuring system

latency, training time, and the feasibility of depth cameras as an

alternative tracking modality.

9.1 Authentication latency

To measure ElectricAuth’s inference latency (i.e., time needed to

make a decision in run-time) and the model training, we utilized

the data from the participants of Experiment#1, i.e., 115 length-6

challenges, eight response records per challenge for training, two

response records for testing.

Run-time inference latency. As we probed the future of EMS-

based authentication, we were interested in understanding how

ElectricAuthwould perform on smaller platforms, such as laptops or

even embedded devices. As such, we ran our system on a MacBook

Pro with a Intel Core i9-9880H CPU and on a Nvidia Jetson Nano

embedded device (measuring 70 x 45mm). Our results show that our

system can authenticate a user in 3ms on laptop’s CPU and 35ms

on a small embedded device. This result suggests our approach is

feasible for quick authentications and even available on mobile or

wearable devices.

Training latency. Our results demonstrate that it took 35s (33s

for anomaly detector; 2s for the challenge classifier) to train the

complete model on a Nvidia Titan RTX GPU and 542s on a laptop’s

CPU (501s for anomaly detector; 41s for the challenge classifier).

9.2 Using camera to capture finger movements

While we used IMUs to capture finger movements in our user

study, we believe these movements can also be captured via other

modalities, such as depth cameras, a common platform for hand

pose estimation [72, 84]. To test our belief, we carried out a simple

feasibility experiment. Here, we swapped out IMU sensors with a

RGB-D camera (Intel RealSense D435), which operates at 640x480

resolution and 30 frames per second. The camera was placed in

front of the participant with a distance of 50cm.

Following the same procedure of Experiment#1, we recorded, via

the depth camera, the responses to our 115 length-6 challenges on

one participant. We then used an available hand gesture recognition

model (from [38]) as our challenge verification model.

We found that the challenge classification accuracy for this sim-

ple feasibility experiment was 99.57% using the depth image. We

also measure a 0.00% success rate of a record-replay attack against

this participant’s model.

10 USING SYNTHETIC DATA TO TEST
ATTACKS AT SCALE

Our user study demonstrated that ElectricAuth was accurate in

verifying each of the 13 participants and robust against any attacks

in that scale. However, gaining insight into how ElectricAuth would

perform in larger deployments (e.g., 100’s of users) is impractical by

means of user studies at an early stage. To shed light into this, we ex-

plore a data-driven approach to evaluate ElectricAuth’s robustness

against impersonation attacks using synthetic data.

Procedure. We followed the recent approach of generating syn-

thetic data by training deep generative models, which is shown to

produce diverse and natural data (e.g., objects [69], human faces [3,

89], faces with emotions [50], and physiological data including ECG,

EEG, and so forth [25]) beyond the training set. Specifically, we

used the PixelCNN++ model [69], a state-of-the-art deep genera-

tive model for images (since we treat each response as an image).

Following [69], we trained a generative model for each legitimate

user in our experiment #2 (see Section 7.2), using the impersonator

responses collected for this user (12 subjects and 115 challenges),

conditioned on the challenge. Once trained, the generator produces

random, natural variations of the training data, emulating responses

of potential impersonators beyond our user study. We validated

each generator using the well-known negative log likelihood (NLL),

which produced results on par with (and often slightly better than)

those reported by [69] on object/face images. This indicated that

our trained generators are able to learn and follow the actual data

distribution rather than overfitting to the training data.

Results: robustness against synthetic impersonators. For

each of the 13 users in our experiment #2, we used the correspond-

ing generator to produce 1075 impersonator responses against this

user. These include 100 synthetic impersonators for each of 5 ran-

domly selected challenges, and 5 additional impersonators for each

of 115 challenges. We then tested these impersonator responses

on ElectricAuth’s authentication model for this user (i.e., the same
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authentication model used in our experiment #2). All impersonator

responses were rejected (i.e., 0% FAR at 5% FRR). This result aligns

with our user study results, and sheds lights on ElectricAuth’s

robustness against impersonation attacks at larger scales.

11 CONCLUSIONS, APPLICATIONS &
FUTUREWORK

We proposed, implemented and evaluated the use of electrical mus-

cle stimulation (EMS) as a novel modality for active biometrics. We

engineered an interactive system, which we called ElectricAuth,

that stimulates the user’s forearm muscles with a sequence of elec-

trical impulses (i.e., an EMS challenge) and measures the user’s

involuntary finger movements (i.e., response to the challenge). The

key idea behind ElectricAuth is that it leveraged EMS’s intersubject

variability, i.e., the same electrical stimulation results in different

movements in different users because everybody’s physiology is

unique (e.g., differences in bone and muscular structure, skin re-

sistance and composition, etc.). Moreover, we demonstrated that

ElectricAuth is secure against data breaches and replay attacks, as

it never reuses the same challenge twice in authentications ś the

key property that allowed ElectricAuth to achieve this is that in

just one second of stimulation our system was able to encode one

of 68M possible challenges.

11.1 Potential applications

We believe that ElectricAuth is applicable to a range of interactive

scenarios in which users authenticate without needing to memorize

passwords or PINs. We believe this is of special interest for devices

that natively offer motion tracking or finger tracking, such as for

virtual reality (which we illustrated in Figure 1 using the Oculus

Quest), smartwatch-based interaction [52, 83, 90] or even lever-

aging a smartphone’s built in IMUs. Furthermore, we believe our

approach is of particular interest for accessibility scenarios, such

as authentication for users with motor-impairments (e.g., spinal

cord injury, arguably the most impactful application of EMS in the

medical domain [61]) but with intact musculature.

11.2 Future work

We believe this first exploration of EMS for user authentication

provides fertile grounds for exploring subsequent challenges and

opportunities: (1) while we have shown ElectricAuth worked well

on the full set of 112 length-2 challenges and a subset of 115 length-

6 challenges, growing the size of a challenge might enable new

applications, as such, research is needed to demonstrate that this

approach works across an even larger set of challenges and over a

longer time period; (2) while ElectricAuth worked well on the 13

participants from our user studies, more physiological research is

needed to deepen understanding of EMS’s intersubject variability;

(3) while ElectricAuth worked well on the controlled wrist pos-

ture, more investigation is required to understand its performance

under other postures and their impacts; lastly, (4) as new EMS

systems emerge from the medical domain (e.g., higher resolution

electrode arrays [33, 36, 65], implanted devices [64], and so forth),

a system like ElectricAuth will likely improve in wearability and

performance, which will require further investigations.
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