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Abstract.

Objective Neural interfaces hold significant promise to implicitly track user

experience. Their application in VR/AR simulations is especially favorable as it

allows user assessment without breaking the immersive experience. In VR, designing

immersion is one key challenge. Subjective questionnaires are the established metrics

to assess the effectiveness of immersive VR simulations. However, administering such

questionnaires requires breaking the immersive experience they are supposed to assess.

ApproachWe present a complimentary metric based on a ERPs. For the metric to

be robust, the neural signal employed must be reliable. Hence, it is beneficial to target

the neural signal’s cortical origin directly, efficiently separating signal from noise. To

test this new complementary metric, we designed a reach-to-tap paradigm in VR to

probe EEG and movement adaptation to visuo-haptic glitches. Our working hypothesis

was, that these glitches, or violations of the predicted action outcome, may indicate a

disrupted user experience.

Main Results Using prediction error negativity features, we classified VR glitches

with 77% accuracy. We localized the EEG sources driving the classification and found

midline cingulate EEG sources and a distributed network of parieto-occipital EEG

sources to enable the classification success.

Significance Prediction error signatures from these sources reflect violations of

user’s predictions during interaction with AR/VR, promising a robust and targeted

marker for adaptive user interfaces.

Keywords: EEG, Virtual Reality, BCI, Neural Interface Technology, Post-error Slowing,
Prediction Error, Predictive Coding Submitted to: J. Neural Eng.

1. Introduction

One of the key challenges in virtual reality (VR) is to create a user experience that

mimics the natural, real-world, experience as closely as possible. The overarching goal
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Neural Sources Detecting Unrealistic VR Interactions 2

in designing immersive experiences is that users “treat what they perceive as real” and,

as a consequence, feel present in the virtual world [1]. This requires a high degree of

visual and haptic synchronization, for example for successful tele-operated surgeries, VR

simulations and experiences. To achieve such haptic realism, many (consumer) devices

are available on the market today.

Yet, to assess the effectiveness of VR simulations, the most established metrics rely

on the users subjective interpretation of unspecific, yet standardized, questions [2, 3].

Unfortunately, answering these immersion questionnaires requires to break the users

immersion to collect data about the previous interaction [4].

One way to overcome this limitation is to elicit a body illusion in VR using avatars.

The idea is, that when the body illusion is effective, users will identify strongly with

their avatar which in turn evidences an effective VR simulation [5]. Using the famed

rubber-hand illusion, the proprioceptive displacement estimates of the real arm position

towards the avatar’s arm position are a robust feature of effective VR simulations [6].

However, for accurate diagnostics of a given simulation and the immersion channels and

hardware in use, a continuous labeling of the user experience is desirable. Psychometric

tests enrich the labels accuracy. But, with increasing frequency of such tests, users

may experience severe distraction. For example, in order to quantify the contributions

of vibrotactile feedback to the user’s experience when grabbing a virtual hammer,

immediate observation is required.

We and others have previously proposed the use of the frontal ‘prediction error’

negativity (PEN) as a feature for fast, real-time, detection of VR system errors which

may, in turn, cause a loss in the sense of physical immersion [7, 8, 9]. Based on the idea

that the brain has evolved to optimize motor behavior by detecting sensory mismatches,

these studies promoted the usage of PENs to label a perceived loss in physical immersion,

potentially impacting presence experience thereby providing continuous diagnostics

about user experience.

To feel present in an environment, users need to establish a dynamic and precise

interaction with their surroundings. This allows users to infer the causal structures in

the (virtual) world and develop strategies to deal with uncertainties in their dynamic

environment [10]. Today, the brain is frequently conceived of as a model of its

environment, in the constant game of predicting the causes of its available sensory

data [11, 12, 13]. In this predictive coding conception, probabilistic analyses of previous

experiences drive inferences about which actions and perceptual events are causally

related. This is inherently tied to the bodys capacity to act on the environment,

rendering the action-perception cycle of cognition into an embodied process [14]. When

all movement-related sensory data (i.e., sensorimotor data) are consistent with the

predicted outcome of an action, the action is regarded as successful. However, when

a discrepancy between the predicted and the actual sensorimotor data is detected, a

prediction error occurs, and attention will be directed to this discrepancy to correct an

erroneous action in real-time [15]. Therefore, the fast and accurate detection of such

discrepancies is crucial to perform precise interactions, in the real as well as in virtual
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Neural Sources Detecting Unrealistic VR Interactions 3

worlds.

The underlying mechanisms and neural foundations of predictive coding have been

extensively studied, see for example [16, 11, 17]. The frontal mismatch negativity

paradigm (MMN, a type of event-related potential, also known as ERP) using stationary

experimental setups has often been employed to probe the predictive brain hypothesis,

see [18] for a review. [19] show that the best fitting explanation of MMN activity are

computations of a Bayes-optimal generative model, i.e., prediction errors. Recently, [20]

demonstrated a passive brain-computer interface (BCI) relying on the frontal MMN

generated by prediction errors. In their work, the brain-computer interface decoded a

user’s intended cursor movement direction on a 6x6 grid. The system regularly probed

the user by observing the EEG response to random cursor movements. How severely

the random dot movement violated the user’s intention was directly reflected in anterior

cingulate (ACC) EEG activity.

However, such stationary EEG protocols that require a user to passively observe

the presented stimuli largely neglect the embodied cognitive aspects of goal-directed

behavior. As a consequence, the cortical activity patterns underlying predictive

embodied processes during goal-directed movement are not fully established. How these

electrocortical features reflect a perceived loss in physical immersion when interacting

with VR/AR is yet to be understood.

In this paper, we address (1) whether the frontal MMN, originating in ACC, is

sufficiently robust to reflect visuo-tactile prediction errors in naturalistic interaction

with virtual worlds, and (2) whether behavioral adaptation, post-error slowing, follows

the visuo-tactile prediction errors.

Recently, the Mobile Brain/Body Imaging (MoBI) paradigm has opened new

possibilities to investigate multimodal predictors of user behavior and experience [21,

22, 23, 24]. We leveraged MoBI to record synchronous EEG and motion capture data

during an interactive VR experience in which we purposefully introduced visuo-haptic

mismatches (please see [7] for details). In the current work, we classified trials into

two categories: following predicted VR feedback (match) and following visuo-tactile VR

glitches (mismatch). We hypothesized a high classification accuracy employing PENs

for this two-class separation. Crucially, we hypothesized that the classification would

strongly rely on (anterior) midline cingulate EEG source activity [20, 25]. Furthermore,

we hypothesized motor behavior to slow down following mismatch trials.

2. Materials & Methods

The overarching idea of our work is to calibrate a classifier that can be applied online

to provide information about the realism underlying the interaction with objects in

VR. To this end, we designed a study in which participants performed a 3D reach-

to-tap task in VR. Our task was inspired by [9]. As a participant reached out to

tap an object, they were presented with three sensory feedback modalities (a visual

only baseline, visuo-tactile, and visuo-tactile with force-feedback). However, to provoke

Page 3 of 18 AUTHOR SUBMITTED MANUSCRIPT - JNE-104961.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Neural Sources Detecting Unrealistic VR Interactions 4

participants into processing an unrealistic VR interaction, we sometimes provided the

feedback prematurely.

In a previous paper, we reported the results of 10 participants experiencing the

force-feedback condition and provided a general description of the PEN in increasing

levels of haptic immersion [7]. There, we reported a strength modulation of PEN

depending on the haptic channels available for interaction.

In the current paper, we report data of a significantly larger sample and excluded

trials of the visuo-tactile with force-feedback condition. They were only collected for

a subset of the participants (10 out of 19) and were always presented following the

counterbalanced conditions of visual only baseline and visuo-tactile. Therefore, the

force-feedback condition did not impact the visual only and visuo-tactile contrast. In

order to improve real-time classification, we leveraged our ERP-based classification

system to localize the network of EEG sources underlying the (linear) separation of

unrealistic VR interactions through PEN.

Further, we hypothesized that following the unrealistic situations participants

movements are slowed down, indicating a more cautious behavioral approach to the

next trial. Therefore, we investigated whether the movement feature ‘tap time’ changed

following unrealistic VR interactions.

In the present work, we leveraged this PEN for classification as well as source

localization while also modeling visuo-tactile mismatches using the movement feature

‘tap time’.

2.1. Apparatus

The experimental setup, depicted in figure 2a, comprised: (1) a VR headset and a wrist-

mounted wearable VIVE tracker, (2) one vibrotactile actuator worn on the fingertip, and

(3) a 64-channel EEG system. A medically-compliant EMS device connected via two

electrodes was worn on the forearm by a subset of participants, see exclusion statement

for this data above.

(1) VR and hand tracking. We used an HTC Vive headset (HTC Corporation,

Taoyuan, Taiwan) with the Vive Deluxe Audio Strap and custem EEG cap spacers ‡
to ensure a good fit and less discomfort due to the EEG cap. We used a Vive Tracker,

attached to the participant’s wrist, to track their right hand.

(2) Vibrotactile feedback. We used a vibration motor (Model 308-100 from

Precision Microdrives), which generates 0.8g at 200Hz. This motor measures 8mm in

diameter, making it ideal for the fingertip. The vibration feedback was driven at 70mA

by a 2N7000 MOSFET, which was connected to an Arduino output pin at 3V.

(3) EEG Setup. EEG data was recorded from 64 actively amplified electrodes

using BrainAmp DC amplifiers from BrainProducts. Electrodes were placed according

to the extended 10% system [26]. After fitting the cap, all electrodes were filled with

conductive gel to ensure proper conductivity.

‡ https://grabcad.com/library/adapter-for-vr-eeg-setups-1
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Neural Sources Detecting Unrealistic VR Interactions 5

Figure 1. Interaction flow depicting one trial in our 3D reach-to-tap task.

2.2. Task

Participants performed a 3D reach-to-tap task in VR designed with Unity Software

(Unity Technologies, San Francisco, USA). The interaction flow of our task, depicted in

Figure 1, was as follows: (1) participants moved their hands from the resting position to

the ready position, to indicate they were ready to start the next trial; (2) participants

waited for a new target to appear (the time of a new target spawning was randomized

between 1-2 s); (3) then, the target (a cube) would appear in one of three possible

positions (center, left, right), all equidistant from the participant’s ready position. A

black cross on the top of the cube indicated the location participants were instructed to

tap; (4) then, participants completed the task by moving and tapping the target with

their index finger. Tapping success was, at least, indicated by a color change of the

cube, see below for a detailed explanation of the feedback conditions. (5) After a target

was tapped, participants moved back to the resting position. Here, they could take a

break before the next trial.

To maximize EEG data quality, participants were instructed to remain in a calm

upright seated position while carrying out the reaching movement. Further, they were

instructed to be precise and keep a comfortable pace. However, no feedback was given

on the accuracy and speed of their task completion.

2.3. Interface conditions

Participants performed the task in two additive feedback conditions:

(1) Visual-only (Visual): When participants tapped the cube, it changed its

color from white to red (visual feedback.)

(2) Visual with vibro-tactile (Vibro): When participants tapped the cube in

the Vibro condition, they received a 100 ms vibro-tactile stimulus with the color change

(Visual + vibro-tactile feedback).

In this paper, our key focus was the calibration and source localization of a

system detecting unrealistic VR interactions such as visual glitches or visuo-haptic

synchronization errors. To maximize statistical power for the focus of our investigation

we pooled trials from the two interface conditions. In order to build a stimulus-agnostic

classification system detecting unrealistic system behavior, we chose to subject the

pooled data to the cross-validation– and localization method.
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Neural Sources Detecting Unrealistic VR Interactions 6

2.4. Introducing Visuo-Haptic Mismatches

To allow us to compare the event-related EEG and movement signatures in a realistic

vs. unrealistic interaction, we presented participants with two different classes of trials:

match trials (C) (75% of the trials) and mismatch trials (M) (25%). This procedure

elicits a prediction mismatch signal in 25% of the trials similar to previous designs

investigating the impact of target probabilities [27].

In the matching trials, the feedback stimuli were presented upon tapping the

object, exactly when participants expected them to occur based on the available visual

information (finger touching the target in the virtual environment). In contrast, in

the mismatch trials, the feedback stimuli were triggered prematurely, which was

accomplished by enlarging the invisible radius of tap detection (collision volume around

the cube object) by 350%. While in the match trials, we used a collision detection

volume of the exact size of the VR cube, in the mismatch trials, we used a larger sphere

for collision detection. Our enlargement of the collision detecting volume was based on

the study design by Singh et al. [9], in which they showed that VR users can detect a

visual mismatch at around 200% of offset from the target. In our pilot tests, we decided

to extend the offset to 350% to make the mismatch more obvious so as to provoke more

pronounced prediction errors.

We used a match-to-mismatch ratio of 75%-25% of the total trials by modeling

our study after previous studies, which also ensured that participants were faced with

a detectable unrealistic behavior of the virtual environment [28, 29, 30]. For these

unrealistic trials to occur, the participants must first be able create a stable model of

how the VR world operates, thus the VR world cannot behave at a random 50%-50%

match-mismatch ratio.

Finally, these match vs. mismatch trials were presented in five pseudo-randomly

generated sequences. Following each mismatch trial, the next trial was always a match

trial. To reduce the predictability of when the next mismatch trial would occur, the

number of consecutive match trials was pseudo-randomized between 1 and 5.

2.5. Experimental design

The experiment consisted of five phases: (1) a setup phase; (2) a calibration phase;

(3) a short training phase; (4) the task itself, in all three possible interface conditions,

each followed by a subset of items from the IPQ questionnaire (G1, REAL2, SP4 and

INV1) [2] and the NASA-TLX [31]. Lastly (5) participants were asked about their

experience in the VR and which condition they enjoyed the most.

For training purposes, we asked participants to wear the HTC VIVE VR headset

for a maximum of 24 practice trials. Overall, the EEG fitting, calibration, and practice

trials took around 30 minutes.

Next, we recorded a within-subjects design with 300 trials for each the Visual and

Vibro feedback condition. The order of the Visual and Vibro conditions was randomized

across participants. We chose to present the two interface conditions in a blocked
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Neural Sources Detecting Unrealistic VR Interactions 7

design. This was done to emphasize the influence of the additional haptic channel while

attenuating higher order interactions, such as a prediction error about the upcoming

interface condition.

2.6. Dataset

2.6.1. Participants 20 participants (12 female, mean age = 26.7 (sd = 3.6)) were

recruited through an online tool provided by the Department of Psychology and

Ergonomics and through local listings. Participants were right-handed, had normal

or corrected to normal vision and had no experience with VR with vibro-tactile

feedback at the fingertip. Participants were compensated with 10 Euros per hour or

1 study participation hour (course credit). Participants were informed of the nature

of the experiment, recording and anonymization procedures and signed a consent form

approved by the local ethics committee of the Department of Psychology and Ergonomics

at the TU Berlin (Ethics approval: GR 10 20180603). Data of the first subject had to

be removed from further analyses due to data recording error.

2.6.2. Recordings: Motion Capture and EEG EEG was recorded using 64 active

Ag/AgCl electrodes placed according to the extended international 1020 system [26].

The electrode at position FP2 was detached from the cap and placed under the left

eye to provide additional information about eye movements (EOG). Impedance was

kept under 5kΩ where possible and the EEG was sampled at 500 Hz and amplified

using BrainAmp DC amplifiers (Brainproducts GmbH, Gilching, Germany). Hand and

head movements were sampled at 90 Hz when coming out of the HTC Vive processing

cascade. EEG, motion capture and an experiment marker stream were recorded and

synchronized using labstreaminglayer §.

2.6.3. Reproducing Results and Data Availability Data, experimental protocol,

analyses code including scripts for a reproduction of the presented results and earlier

publications are accessible from a comprehensive repository hosted at open science

foundation (OSF)‖. BIDS formatted data is hosted on openneuro [32].

2.7. Processing

2.7.1. Behavioral Adaptation Following VR Glitches Motion capture data was filtered

with a 6Hz low-pass filter and re-sampled to match the EEG sample rate using MoBILAB

routines for concurrent analyses [33]. Subsequently the first derivative was computed

and velocity was extracted.

We computed ‘tap time’, the time elapsed between the start of the reaching

movement following object spawn and the end of that movement, using the hand velocity

time series. The reach onset was detected on the hand velocity time series by moving

§ https://github.com/sccn/labstreaminglayer
‖ https://osf.io/x7hnm/
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Neural Sources Detecting Unrealistic VR Interactions 8

backwards from the velocity peak of the reach movement and selecting the first sample

where the velocity fell below 0.05 m/s. The end of the reach was determined as the

first sign reversal of the movement change in z-direction, the primary reach direction,

following the start of the reach. As such, tap time was detected on the continuous time

series and not on the experimental event. This would have been problematic since the

premature appearance of the mismatch feedback event would have artificially created

an effect.

To assess behavioral adaptation, we modeled the rate of change in ‘tap time’ with a

linear model. To this end, we computed the difference in ‘tap time’ between subsequent

trials and report this rate of change as a response to the experimental manipulation [34].

We reported tap time instead of reaction time since participants were not primed, nor

did they receive any reward for fast and accurate trial completion. The model ‘change

in tap time ∼ trial change’ was fitted using Matlab’s ‘fitlm’ function and assessed

using ‘anova’. Trial change was entered as a categorical predictor reflecting whether the

current trial change was match to mismatch, mismatch to match or match to match.

Since the number of consecutive match trials was pseudo-randomized between 1 and

5 we decided to exclude trials where a mismatch trial occurred again after the first

subsequent match trial. These trials corresponded to both the mismatch to match and

match to mismatch trial change category. This resulted in the removal of 30 Trials per

participant for the behavioral analysis.

2.7.2. Brain activity: EEG Preprocessing, Independent Component Analysis (ICA)

EEG data preprocessing and ICA were performed in Matlab 2019b (MATLAB, The

MathWorks Inc., Natick, MA, USA), using the EEGLAB toolbox [35] and custom

‘BeMoBIL Pipeline’ scripts and functions. To detect bad channels for rejection, the

‘FindNoisyChannel’ function was used, which is selecting bad channels by amplitude,

the signal to noise ratio and correlation with other channels [36]. Rejected channels

were then interpolated while ignoring the EOG channel, and finally re-referenced to

average reference (data A). The data was then filtered with a 1 Hz high-pass filter (data

B) and a first adaptive mixture independent component analysis, AMICA [37], was used

to identify eye related independent components (ICs) which were projected out of the

sensor data. For this, the rank was reduced by one for the use of an average reference

and further by the number of interpolated channels in the respective data set. To

identify eye components, IClabel [38] was used, whereas components exceeding a value

of 0.7 for the ’eye’ class were defined as eye components. Then, to detect segments of

noisy data, an automated time domain cleaning (see [39]) was performed on narrowly

filtered data from 1 to 40 Hz. The data was therefore first split into 1 second long

segments for which the mean absolute amplitude and standard deviation of all channels

as well as the Mahalanobis distance of all channel mean amplitudes were calculated.

All three methods results were then joined together in order to rank all segments. The

12% highest ranking noisy segments were selected for rejection and an additional buffer

of ±0.49 sec was added around each segment resulting in about 15% rejected data for
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Neural Sources Detecting Unrealistic VR Interactions 9

each subject. This data was rejected from data B and a second AMICA was calculated

on this time domain cleaned data. A dipole fitting procedure was performed for each

spatial filter using the 10-20 standard electrode locations and a boundary element head

model (BEM) based on the MNI brain (Montreal Neurological Institute, MNI, Montreal,

QC, Canada). The spatial filter information was then copied back to the preprocessed,

interpolated and average referenced data set (see description of data A above).

To obtain indices of clean tap epochs, we leveraged EEGLAB’s ‘pop autorej’

function to remove epochs exhibiting large amplitude fluctuations. We used the

functions default settings and entered epochs from -3 to 2 seconds surrounding the

tap events. On average, 80.7 epochs were rejected (SD = 32.6) amounting to ∼13% of

the data.

Ultimately, all ICs with a probability smaller than .7 as indicated by the ICLabel

‘brain’ class were projected out of the data. This resulted in the final dataset including

only very likely brain sources and their projections to the channels. Across the study

set, 271 independent components were retained forming a representative sample of about

14.3 (SD = 5.0) components per participant. All subsequent EEG analyses were based

on these data.

2.7.3. EEG Classifier, Classifier Scalp Projections and Localization of Components

relevant to Classification In the current work, we present a processing pipeline with

slight updates as compared to our earlier work [7]. To reproduce our previous findings,

we report a permutation t-test of the ERP at electrode FCz. Activity at electrode FCz

in the time window from 150 to 200 ms post mismatch event featured prominently in

our earlier analysis and is frequently considered for MMN paradigms investigating ERPs

at the scalp level, for modeling evidence see [19, 40]. For completeness, we report all

electrodes that exhibited an amplitude difference at 200 ms post tap event. To this

end, we computed a t-test of the amplitudes at 200ms post tap event. To correct for

multiple comparisons, the false discovery rate (fdr) was computed with alpha = 05 [41].

Channels whose p-value exceeded the fdr were plotted, see figure 3.

For classification of single-trial ERPs, we followed the approach introduced by [20].

A regularized linear discriminant analysis classifier was trained per participant with

all mismatch trials constituting class 1 and a random sample of an equal number of

match trials labeled class 2. Using the open-source toolbox BCILAB ver. 1.4, the

classifier was trained on windowed means as features. First, EEG data were re-sampled

to 100 Hz and band-pass filtered from 0.1 to 15 Hz. Average amplitudes of all channels

in eight sequential 50 ms time windows between 0 and 400 ms after the cube was

tapped were extracted as the windowed means feature vectors. A mean baseline taken

in the -50 to 0 ms window was subtracted in order to compensate for event classes,

match and mismatch, occurring at different stages of the ongoing movement. For

robust performance estimation, a 5 x 5 nested cross-validation was used to calculate

the shrinkage regularization parameter and assess the classifiers performance.

Classification accuracy was statistically evaluated using a two-sample T-test with
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Neural Sources Detecting Unrealistic VR Interactions 10

the mean classifier accuracy per participant across folds and simulated chance level given

trial numbers in each class [42].

In order to learn what regions of the brain the classifier specifically relied on, we

first transformed the LDA filters at each time window to LDA patterns reflecting a

mixture of scalp activations with regards to the discriminative source activity [43].

Subsequently, each independent component’s relevance for classification was computed

as the dot product of the LDA patterns per time window and the ICA unmixing matrix

filter weights [20]. The equivalent current dipole models of independent components were

then weighted by their relevance and ultimately visualized via EEGLAB ‘dipoleDensity’

plots [44]. The Harvard-Oxford atlas was consulted to extract cortical labels of regions

of interest [45].

3. Results

Participants reached towards the target object after it appeared on the table. In the

match trials without visuo-tactile VR glitches, participants took on average 1.04s (SD

= .19) to complete the reach-to-tap.

We created visuo-tactile VR glitches by increasing the (bounding) object volume

of the target. Hence, the collision detection registered prematurely. In these mismatch

trials, participants took on average .73s (SD = .12) to complete the reach-to-tap, see

figure 2b. Hence, increasing the (bounding) object volume for collision detection led

to a spatio-temporal mismatch of approximately 300 ms as compared to the congruent,

match, condition. The velocity profile in both conditions exhibited a narrow peak during

outward reaching with a peak magnitude of .6 m/s and a broader and lower peak when

the hand was retracted back to its origin, see figure 2b bottom.

p < .001
p < .01

c

'tap time'

spawn

Mismatch

Match

b

vibration
motor

64 channel EEG
a

ve
lo
ci
ty

(m
/s
)

Figure 2. Task Structure and hand velocity profile. a Participants were instructed to

reach to an appearing cube on a desk in front of them and tap it. They were equipped

with a VR headset, a 64 channel EEG cap, electrode spacers and rigid body tracker

on the hand. The vibration motor was placed under the fingertip of the index finger.

b Top: Inside VR view of experimental scene. Bottom: Grand-average velocity with

95% confidence interval of both, match and mismatch conditions with event markers

for object ‘spawn’, tap time start and end as well as moments of object tap in match

and mismatch conditions. c Distribution of rate of change in tap time for the three trial

change categories ‘match to match’, ‘mismatch to match’ and ‘match to mismatch’.
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Neural Sources Detecting Unrealistic VR Interactions 11

3.1. Prolonged Tap Time Following VR Glitches

‘Tap time’, the hand movement period from movement start to reaching the object,

lasted on average .74s (SD = .15) in match- and .69s (SD = .15) in mismatch trials.

We calculated the rate of change in ‘tap time’ as a metric of post-error slowing and

observed that trial change categories impacted ‘tap time’ (F(2) = 53.7, p < .001, R2 =

.66). Following match trials, ‘tap time’ in the subsequent trial did not change, i.e. 0

ms (SD = 20 ms). However, following mismatch trials, ‘tap time’ was increased in the

subsequent trial on average by 47 ms (SD = 37 ms, t18 = 5, p < .001). For completeness,

‘tap time’ decreased from match to mismatch trials on average by 50 ms (SD = 33 ms,

t18 = −5.4, p < .001).

Baseline Features 0

0.01

0.02

0.03

0.04

p
(fd
r)

a b

Figure 3. a: Grand-average ERP (n = 19) of projected source mixtures at electrode

FCz with significant class differences marked in grey. Bottom: Time windows used to

compute features for classification (all greens). Windows in light green indicate time

windows of interest for classifier source localization. b: Electrodes with a significant

amplitude difference (fdr corrected) between match and mismatch trials at 200 ms

post tap event. Electrode locations are color scaled by their respective p-value, colder

colors correspond to a lower p-value. Scalp location of electrode FCz (see subplot a)

is highlighted with a red background.

3.2. ∼77 % Classification Accuracy Detecting VR Glitches using ERPs

We found significant differences between match and mismatch trials in the grand-average

event-related potential (ERP) at several scalp locations, see figure 3 showing the ERP

at electrode ‘FCz’ for an example. Hence, we reproduced our previous findings in [7]

with an altered processing pipeline. At electrode ‘FCz’, amplitude differences at 200 ms

indicated a significant difference between mismatch, i.e. the VR glitch condition and

the matching trials (t18 = −5.34, p < .001). Differences were observed most strongly in

the 150-280 ms time window, at 250 ms and in later windows starting at 350 ms, see

figure 3.

To assess the potential for single-trial online applications, a discriminative

classification system was cross-validated. The system, using windowed mean ERP

features, succeeded in detecting VR glitches. Mismatch and match trials were correctly

labeled to the corresponding class with an average accuracy of ∼77 percent (SD = 9.12).

The classification accuracy exceeded chance level at ∼ 56 percent, t(18) = 42.1, p < .001.
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Neural Sources Detecting Unrealistic VR Interactions 12

3.2.1. Classification Driven by Midline Cingulate and Occipital EEG Sources To draw

conclusions about the cortical origin of the discriminatory signal we investigated which

EEG sources contributed maximally to the classification. With regards to the system’s

applicability as robust neural interface technology, this source reconstruction served

two purposes: (1) Asserting that the classifier did not rely primarily on artifact EEG

sources, and (2) to gain additional information about the contributing brain regions to

allow interpretations about cognitive processing.

In the fourth time window of the eight windowed mean features (150 - 200 ms,

see the first light green shaded window at the bottom of figure 3 and in figure 4a

top) classifications were driven primarily by activity originating in right lateral parieto-

occipital cortical sources (BA19; MNI: x = 30, y = -70, z = 30), see figure 4a bottom.

In the following time-window (200 - 250 ms, see the second light green shaded window

at the bottom of figure 3 and in figure 4b top) the classification signal draw from

distributed source activity in occipital areas as well as from sources located in anterior

midline cingulate gyrus (near BA23; MNI: x = 0, y = -10, z = 30), see figure 4b bottom.

Some ocular sources were not classified as such by our automated processing pipeline

and carried information relevant to classification in this time window of interest.

Figure 4. An LDA classifier was trained on eight windowed means of 50 ms size from

0 to 400 ms following the cube tap, see figure 3 bottom. Two classes of synchronous

and asynchronous trials were labeled for training and cross-validation. a, b Scalp

maps of difference-between-classes activity for the 4th (150-200) and 5th (200-250ms)

time windows and the equivalent source localization (MNI coordinates of the location

of maximum activity).

4. Discussion

With this study, we contributed a new approach to automatically detect conflicts in

visuo-tactile sensory integration in VR based on a classifier using ERPs.

Our work aimed at elucidating whether ERP-based classification can help address

the challenge of continuous labeling of a user’s immersion. This work contributes

towards the overarching goal to develop a continuous method to validate the effectiveness

of haptic devices that foster presence experience.
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Neural Sources Detecting Unrealistic VR Interactions 13

We achieved a ∼77 % classification accuracy detecting visuo-tactile glitches in a

reach-to-tap task in VR. The midline cingulate cortex as well as a distributed network

of parieto-occipital EEG sources enabled the classification success.

We believe our experimental setup, and/or data, can be used to calibrate a

classifier that labels unrealistic VR interactions in near real-time. Consider the

example of grabbing a hammer in VR with a game controller. When the available

sensory channels are misaligned, for example the hammer ‘snaps’ to the virtual hand

before the controller’s vibration simulates physical contact, the interaction is labeled

‘unrealistic’ by the ERP-based classifier. When interacting with objects in VR, ERP-

based classification is a promising endeavour due to the abundance of events.

4.1. Post-error Adaptation Following Visuo-Tactile Mismatches during Interaction

with Virtual Worlds

We hypothesized a trial-to-trial adaptation in movement behavior as an implicit behav-

ioral reflection of the effectiveness of our ‘VR glitch’ experimental manipulation. [34]

have shown that correlations of brain signals with global averages of post-error slowing

metrics may be moderated by confounding cognitive processes, e.g. fluctuating concen-

tration levels. Therefore, we looked at the rate of change in ‘tap time’. Between two

subsequent match trials there was no change in ‘tap time’. However, ‘tap time’ increased

in the trial following a mismatch trial. Similarly, we observed a decrease in ‘tap time’ in

the mismatch trials following match trials. While the effect is comparable in absolute

value to the increase in the ‘match to mismatch’ trial change condition, we note that

it is challenging to separate the processes underlying these changes in behavior. While

one might happen more immediately due to the glitch manipulation, the other one may

happen as a delayed consequence of it.

In general, these findings confirmed our manipulation, since the visuo-tactile VR

glitch impacted behavior. Consequently, this ruled out the possibility of an automatic

behavior in which participants were unaware of the manipulation. Since the task

featured 600 trials, this was not unlikely.

We believe our findings further evidence the literature on post-error adaptation,

with participants taking a slightly more cautious approach following VR glitches [46].

This speed decline has frequently been observed to facilitate increasing accuracy on

subsequent trials [47]. Here, cognitive control processes inhibit motor execution,

presumably by closely monitoring, and raising, cortical activity thresholds [48].

In summary, we believe our data captures ‘prediction errors’, violations of goal-

directed behavior under consideration of the predicted action outcome. Further, we

hypothesize cognitive control mechanisms to monitor and adjust subsequent motor

output with one objective being an increase in behavioral accuracy. Only observing

minor differences in absolute values between ‘mismatch to match’ and ‘match to

mismatch’ may be due to the missing framing of our task: (1) not giving participants an

incentive to optimize the speed-accuracy trade-off and (2) not providing any feedback
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Neural Sources Detecting Unrealistic VR Interactions 14

on their task performance. Not collecting an accuracy metric is a shortcoming that

should be improved in subsequent works, for example as in [49].

4.2. Towards BCI based on Embodied Predictive Coding during Interaction with

Virtual Worlds

In order to describe a robust ERP feature representing prediction errors, we localized

their EEG source origin and found two loci: (1) the midline cingulate cortex and (2) a

distributed network in parieto-occipital areas.

The role of midfrontal EEG source activity has frequently been linked to cognitive

control processes [47, 50, 51]. Crucially, these studies employed a stationary setup,

limiting participants’ interaction with the task environment. However, environmental

affordances surpass the visual domain. Particularly in humans, a proclivity to use both

hands to act on the environment has emerged and is greatly trusted upon, for example

when finding your way in the dark [52, 53, 54]. In fact, many tasks can be completed

without concurrently consulting the visual domain, such as typewriting or even reaching

for a cup; these typically rely heavily on the tactile and proprioceptive sense and as such

are denoted as eyes-free interactions.

In our voluntary, albeit instructed, tapping task, we observed a frontal prediction

error negativity, ‘PEN’, (at electrode FCz) to exhibit a familiar time course as compared

to stationary setups reporting MMN, see difference wave in figure 3. In line with

the MMN literature, we observed a stronger early negative deflection in mismatch

trials as compared to the match trials, see figure 3. [20] report a single ‘PEN’ source

origin in anterior cingulate cortex, however in our study, besides midline cingulate

sources, sources in parieto-occiptal areas contributed to the successful classification.

Previously, [15] observed an effect of prediction errors about the visual consequences of

the current motor action in a reaching task in parietal electrodes contralateral to the

reaching hand. The authors conclude a role of the dorsal processing stream, processing

the ‘where’ in visuomotor ‘PEs’. Interestingly, first evidence now indicates that cortical

cross-talk between the motor area corresponding to the active, for example reaching,

hand and parietal regions may in fact reflect the strength of the body illusion in VR, the

illusion that an avatar’s hand is in fact mine [55]. Considering the classifier weighting

in our task in the time periods between 150 to 200 ms as well as 200 - 250 ms, we take

note of a parieto-occipital reliance for match/mismatch separation in the earlier time

window which was followed by a more pronounced weighting on frontal midline sources

in a following time window.

Hence, we observed our classifier to first rely on parieto-occipital sources and

subsequently on frontal midline sources in the typical time range of the MMN. This

may indicate the role of embodied affordances in our immersive reaching task. Attention

modulating cognitive control during ‘PEs’ may be represented in the MMN. In stationary

setups or ‘motor-passive’ paradigms, such as in [20], no countermeasure to correct the

‘PE’ exists. This may explain a heavy role of midline cingulate activity in classification
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Neural Sources Detecting Unrealistic VR Interactions 15

with no other sources contributing. However, even for a simple task like reaching for

an object, several sensory signals (e.g., visual, tactile and proprioceptive feedback)

are continuously gathered and analyzed to efficiently interact with/in a dynamically

changing environment. To compensate for the sensory noise within the nervous system

and for the uncertainties in the dynamic environment different movement-related sensory

cues have to be integrated. To gain an overall representation of the body position,

movement and acceleration, the most reliable sensory information must be enhanced

while the most noisy ones must be diminished [56], i.e. multisensory integration.

With increasing immersion, processing gets more accurate and therefore might trigger

a hierarchical cascade of ‘PE’ processing [57]. Here, multisensory integration in parieto-

occipital regions precedes action outcome evaluation and cognitive control supported

by midline cingulate cortex structures. However, the fact that our classifier relied on

parieto-occipital source activity is direct evidence for ‘PE’ processing. One possible

explanation is that sensory ‘PEs’ may already be resolved at early stages in the

processing cascade instead of an inefficient signal forwarding to frontal brain areas.

4.3. Limitations & Open Challenges

To allow for a full reproduction of our results, we provide the BIDS formatted data

as well as all processing code alongside this publication. We chose automated over

manual processing. However, problems remain in automated labeling of EEG sources.

As evident in figure 4 sources localized to the eyes did contribute to the classification.

More stringent vetting of EEG sources could make the results to rely exclusively on

brain sources. However, using the eye activity features for classification is useful as

long as it is reliable. This is especially relevant when using low-density EEG systems,

such as consumer market products and it would be interesting to dissociate the different

sources’ contribution to the classification.

One way to validate ‘PEN’ as a correlate of sense of presence would be a correlation

with established presence questionnaires [3, 2]. We believe that due to the highly

repetitive experimental design and very subtle experimental manipulation, frequently

asking questions would not yield valid results in the sense that frequently breaking

the ongoing presence experience would bias the very construct we aimed at measuring.

Recently [58] reported a correlation of late ERP components in central electrodes with

the subjective presence experience. The authors used an auditory irrelevant probe

paradigm and showed that ERP fluctuations to auditory distractor probes coincided

with presence ratings. This approach relies on probing the user’s overall attentional

state. Instead, our proposed approach directly probes the user’s internal model of their

environment providing a precise task-relevant marker for neuroadaptive interfaces [59].

Due to the high-level of immersion in VR, classifying event-related activity such

as that occurring during object interaction, may be improved by an unfolding of

overlapping activity. For example, when picking up a virtual hammer in VR, several

‘events’ may co-occur. A visual event in the background may coincide with the haptic
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event of the controller when making contact with the hammer. The exact timing and

rich descriptions of all such co-occurring events readily exist in VR simulations making

near real-time overlap correction feasible. Novel approaches to ‘unfold’ such EEG data

exist [60]. We believe real-time ERP-based user experience classification in VR will

benefit significantly from such overlap correction, amplifying the signal while attenuating

the noise.

4.4. Conclusions & Outlook: Towards a Robust Metric of Presence Experience in

Virtual Worlds

Midline cingulate EEG sources contributed to prediction error ERPs, ‘PENs’, and may

serve as a robust source to detect violations of user’s predictions about the interaction

with virtual worlds [7, 8, 20]. This source origin can be specifically and repeatedly

probed for real-time BCI purposes, informing the technical system about the user’s

mental representation generating the predictions [59, 20]. If follow up studies replicate

and extend on our classification success several benefits emerge: (1) the ERP-based

measure to continuously evaluate haptic immersion gains significant robustness and

reliability. (2) This will in turn motivate further research on the PE paradigm moving

towards implicit measures of the user’s subjective experience. (3) We believe this paves

the way for fast and reliable real-time adaptation as the EEG feature search space is

significantly reduced. However, our results also show a network of distributed parieto-

occipital EEG sources contributing to the classification success. This indicates the

challenges remaining in scenarios with a higher level of physical immersion.

With this work, we hope to contribute to the design of a new method based on

neural interface technology to assess the effectiveness of haptic devices that foster the

emergence of presence experience.
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