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Figure 1: (a) We engineered DigituSync, a passive exoskeleton that allows two users to share the same hand pose. DigituSync
requires no electronics to transmit forces and has virtually no latency, making it ideal for fine-motor skill transmission. In
addition, (b) each finger mechanism features variable-length linkages that allow adjusting the amount of force to be conveyed.
(c) Taken together, DigituSync is useful and safe to deploy in a variety of settings, such as between students and teachers in a
music classroom.

ABSTRACT
We engineered DigituSync, a passive-exoskeleton that physically
links two hands together, enabling two users to adaptively transmit
finger movements in real-time. It uses multiple four-bar linkages
to transfer both motion and force, while still preserving congru-
ent haptic feedback. Moreover, we implemented a variable-length
linkage that allows adjusting the force transmission ratio between
the two users and regulates the amount of intervention, which
enables users to customize their learning experience. DigituSync’s
benefits emerge from its passive design: unlike existing haptic de-
vices (motor-based exoskeletons or electrical muscle stimulation),
DigituSync has virtually no latency and does not require batter-
ies/electronics to transmit or adjust movements, making it useful
and safe to deploy in many settings, such as between students and
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teachers in a classroom. We validated DigituSync by means of tech-
nical evaluations and a user study, demonstrating that it instantly
transfers finger motions and forces with the ability of adaptive force
transmission, which allowed participants to feel more control over
their own movements and to feel the teacher’s intervention was
more responsive. We also conducted two exploratory sessions with
a music teacher and deaf-blind users, which allowed us to gather
experiential insights from the teacher’s side and explore DigituSync
in applications.
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1 INTRODUCTION
Learning dexterous hand skills plays an important role in our
lives, from using highly dexterous interfaces (e.g., keyboards, touch
screens), playing musical instruments [32, 33, 35, 49, 76, 106], per-
forming surgical procedures [11], and even assisting others with
their movements, such as in hand rehabilitation [1, 18, 82, 92]. These
interactions require precise and stable finger pose, force, speed, and
timing (rhythms) control over individual fingers and their coordina-
tion [33, 49, 53, 69, 81, 108]. Given the complexity of these activities,
learning them takes a substantial amount of time due to the need
to acquire many fundamental skills (e.g., simultaneous control of
finger pose, force, speed, rhythm) that are hard for a novice user to
understand by just passively watching a skilled user.

As such, a significant amount of research in interactive systems
has been dedicated to creating devices that can support transferring
skills. Popular examples of such devices include those that share
visual perspectives using either head-mounted displays (HMD)
[4, 44, 45, 47, 52, 101] or projection mapping systems [50, 76, 106],
both of which allow a student to view the teacher’s hand move-
ments from the teacher’s perspective. While these approaches scale
up well, they do not transmit all the rich information that under-
lies skilled movement, such as force control. As a response, many
researchers have focused on designing wearable devices that pro-
vide the missing haptics by leveraging exoskeletons with active
motors [6, 25, 31, 56, 61, 62, 78, 94], electrical muscle stimulation
[29, 55, 66, 68, 89], or even pneumatics [22, 87]. Providing haptic
feedback directly to a novice user’s body has often proven to be
effective in motor learning scenarios such as learning rhythmic
activities [22, 24] or recovering grasping capability after injuries
[6, 13, 30, 99].

However, active haptic devices (e.g., motor-based exoskeletons)
are not without limitations. This includes limitations such as (1)
end-to-end latency, which is problematic in skill-sharing [71]—in
fact, even assuming a collocated system (no network; teacher and
learner see each other), just 200ms of haptic latency (very fast for
motor-based exoskeletons) will be detrimental to the learning expe-
rience [28, 71], the sense of agency [5, 17, 79, 98], and the learning
[46, 98]; (2) prohibitive cost, a pair of exoskeletons, such as Dexmo
[25], might sell anywhere between 2400-45000 USD (actual quotes
from vendors), which prevents exoskeletons and other active haptic
devices from being widely used in school or home settings; (3)
adaptive feedback: the challenges of the manufacturing cost and
the setup effort in active haptic devices made researchers explore
simpler and direct techniques such as “hand-over-hand guidance”
[8, 82]—a technique in which the therapist assists a user in per-
forming a task by physically grabbing the user’s hands or wrists,
or even using simple knitted joined-suits or gloves to synchronize
two bodies’ movements [100]; while these simple techniques can
provide instant haptic feedback, these are not designed to transmit
complex gestures (e.g., knitted joined-gloves have a lot of mechani-
cal slack) nor these provide adjustable force feedback, which plays
a critical role in skill acquisition and learning experience including
the feeling of agency and the motivation [2, 23, 32, 42, 80, 96, 111].

In this paper, we take a different approach to realizing finger-
skill transfer, one that is inspired by the precision and dexterity
of exoskeletons but that circumvents their adjustability, latency,

Figure 2: Sharing real-time finger motion and force through
linkages between two users

and prohibitive cost. To achieve this, we engineered DigituSync, a
completely passive dual-user hand-exoskeleton. DigituSync allows
two users to share the pose, force, speed, and timing of their finger
movements on all fingers via mechanical linkages. Because the
core of DigituSync is entirely 3D printed and has no electronics, its
cost is as low as 40 USD, which we hope will enable such devices
to be adopted in large classrooms. Moreover, as DigituSync is de-
signed for providing adaptive feedback to a learner, we engineered
it with end-user customization in mind, i.e., the teacher or the stu-
dent can change the force transmission ratio to adjust the level of
intervention in proportion to their learning progress.

2 OUR APPROACH: SHARING DEXTEROUS
HAND GESTURES THROUGH PHYSICAL
LINKAGES

Our key contribution is the design, engineering, and evaluation
of a dual-user passive exoskeleton that allows users to share their
hand postures in dexterous activities, as depicted in Figure 2. Our
approach has the following benefits: (1) adaptive, real-time, and
congruent haptics: unlike active exoskeletons which require sen-
sors and actuators, our passive exoskeleton users can experience
real-time haptics (e.g., pressure, rigidity) without any perceptual
delay and much loss of fidelity. This is a direct benefit of our physi-
cal link. More importantly, our custom mechanics allow users to
change the amount of force feedback, while preserving the nature
of real-time and congruent feedback, enabling customization of
their learning experience; (2) safe to use: our exoskeleton is en-
tirely controlled by the users, without forces from motors, making
it extremely safe and easy to deploy; (3) wearable, walk-up-use,
and low-cost: our device literally fits the user’s hands like a glove,
it is easy to understand and use without any explanations, which
we confirmed in our user studies. It also features magnetic linkages
that allow to attach and detach two users together, enabling stu-
dents to receive haptic assistance just when needed. Lastly, thanks
to the passive form factor the cost is drastically reduced (40 USD),
making it easy to equip a classroom with dozens of DigituSync.

Naturally, our exoskeleton design is not without its limitations:
(1) hand-over-hand guidance: the teacher can guide the learner
by positioning their hand over the learner’s hand, while this suits
applications such as piano, pegboard rehabilitation, occupational
therapy, etc.; it restricts the space of applications when compared
to motor-based decoupled exoskeletons; (2) finger motion: our
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current mechanism solely transmits vertical finger motion, while a
teacher can rotate a learner’s hand through the wrist linkage. It also
places linkages on the finger’s dorsal side, which interfere with the
user’s palm, this prevents full grasp gestures; (3) the weight of the
other: since both users’ hands are physically connected, users feel
the weight of the other user, which might impact the performance;
yet, in our studies, no participant mentioned this limitation. Lastly,
note that we are not proposing to replace all existing haptic devices;
instead, we tend to think of DigituSync as a unique passive device
that is particularly useful for situations that require no latency, high
accuracy, and easily deployable in safe settings.

3 RELATEDWORK
3.1 Hand Skills and Dexterity
Hand interactions are of one the central abilities of human beings
[43]. A dexterous interaction, such as playing the piano or interact-
ing with a computer keyboard, requires precise control of one’s indi-
vidual fingers’ pose, force, speed, and timing [33, 49, 53, 69, 81, 108]—
usually in synchronization with one’s hands and eyes. Dexterity
played such a major role in evolution that much of our brain’s
capacity is dedicated to understanding the state of our hands. As
such, there is a lot of research in interactive systems that can allow
the learner to see from the teacher’s perspective.

3.2 Seeing from the teacher’s perspective
One popular and effective way to convey a person’s physical in-
teractions to another is by visually depicting what the other sees
from their perspective. This has been realized by visually projecting
their gestures [50, 76, 106] or by switching/blending both user’s
views using head-mounted displays (HMD) [4, 44, 45, 101]—these
approaches allow, for instance, a teacher to transfer rhythmic hand
movements [47, 52]. These techniques have been further extended
by using virtual reality (VR) which also allows two persons to share
a virtual body [19, 26, 88]. While these visual-based approaches
allow for tele-learning, they do not transmit all the rich haptic cues
that underlie skilled movements, such as pose, force, speed, and
timing control. While visual-based methods might apply for a sub-
set of these skills, other cues are not being conveyed, such as force
control.

3.3 Feeling from the teacher’s perspective
As a response, researchers turned to engineer wearables that pro-
vide the missing haptics. For instance, even just sharing vibrotactile
cues allows us to teach rhythms [18, 34], melodies [35], and gait
[63]. While vibration is exceptional in providing temporal and tac-
tile information, it leaves out kinesthetic cues, such as forces, etc.
To this end, researchers often rely on force-feedback devices with
sufficient force to move the user’s body (typically with motors),
including large surgical telerobots that provide enhanced dexterity
to doctors or wearable robotic arms, such as Fusion [78] or Naviarm
[56], which allow two users to transfer upper-limb motions, and
electrical muscle stimulation (EMS—a technique that directly stim-
ulates the muscles with electrical pulses, causing them to feel force
feedback [14, 51, 70, 89–91, 109]. While EMS has been used to share
simple movements across multiple users [27, 29, 66, 68] and to teach
drumming [15], it still remains a key challenge to precisely actuate

multiple fingers simultaneously [86]. Aside from active actuators
or EMS, researchers have been also exploring the other side of the
spectrum: passive mechanisms. These mechanisms, such as linkages
or hydrostatic transmissions, are increasingly popular since they
achieve safer, accurate, and direct bi-directional interaction. Exam-
ples include: a humanoid robot controlled by hydrostatic tubes from
a remote location [103], sharing remote users’ presence through
mechanical rollers [12], changing the dimensions of the user’s hand
[59, 64, 65, 67] and body [3] via mechanical linkages, or even com-
putation using microstructure [36–38]. While passive devices excel
in safety, they dispense some advantages from active devices, such
as dynamic adjustments, etc. As such, researchers have been ex-
ploring designs that supplement the passive exoskeletons with
additional mechanisms, such as active brakes [16, 25, 31, 54], ad-
justable dampers [95], or variable-length linkages [110]. We take
inspiration from these semi-passive mechanisms to engineer our
exoskeleton that allows bidirectional and adaptive transmission of
individual finger motions.

3.4 Adaptive and interpersonal haptic learning
There is substantial evidence that supports the role of adaptive
and interpersonal haptic learning, coming from HCI and neuro-
science. Adaptive training is a training paradigm in which the task
or the feedback is varied as a function of how well the learner per-
forms [48], leading to better performance as well as moremotivation
[2, 23, 32, 42, 80, 96, 111]. One way to provide adaptive feedback to a
learner is to establish an interpersonal haptic communication—the
teacher responds to the learner’s action directly. Researchers have
shown that interpersonal motor learning is effective as it can pro-
vide more responsive feedback to a learner’s action [7, 21, 41, 58, 72–
74, 102]. For instance, connecting two users’ wrists via a physical
linkage, allows them to achieve higher performance in a target
tracking task when compared with doing the task alone [20, 83–85].
Therefore, these suggest that feeling the physical movements of
the other user (e.g., teacher) play a positive role in skill transmis-
sion. This is precisely the inspiration for our work, in which we
explore how even a passive exoskeleton can achieve adaptive and
interpersonal transmission of new finger skills.

4 IMPLEMENTATION

Figure 3: DigituSync consists of finger sockets, variable-
length linkages that transmit motion, palm bases, and a wrist
linkage.
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Figure 4: (a) Linkage structure of the transmission mech-
anism. (b) Overview of the finger socket and the pin-slot
behavior.

Figure 5: The pin slots successfully absorb the distance dis-
placement of the inner joints and transmit finger motion.

As depicted in Figure 3, DigituSync consists of: finger sockets, a
finger motion transmission mechanism with variable-length link-
ages, palm bases, and a wrist linkage. To accelerate replication, we
provide all 3D files and bill of materials of our implementation1.

4.1 Finger motion transmission mechanism
To transmit the movement of individual fingers between two users,
we designed a transmissionmechanism, depicted in Figure 4 (a). The
core of the mechanism is comprised of multiple four-bar linkages,
allowing bi-directional interactionwithout motors and with no delay.

The motion of our mechanism is illustrated in Figure 4 (b). When
the teacher bends the first joint of their index finger (distal inter-
phalangeal joint), their fingertip pushes down the bridge link 𝐴3,
which in turn pushes down the connection link 𝐶3 and the bridge
link 𝐴3 of the learner’s side. Thus, the teacher’s finger motion is
replicated on the learner’s finger, and vice versa, moving the users
together, preserving all haptic cues. The bridge links 𝑍𝑌 and 𝑌𝑋
of the learner’s side are angled preventing interreference with the
learner’s finger joints when bent.

Since the distance between each socket 𝑆𝑋 , 𝑆𝑌 , 𝑆𝑍 and between
socket 𝑆𝑋 and Joint 𝐽0 will change when fingers are bent or ex-
tended, a pin slot was attached to the sockets 𝑆𝑖 to permit trans-
lating movement from each joint to the bridge links 𝑍𝑌 , 𝑌𝑋 , and
𝑋 𝐽 . These pin slots absorb the distance displacement of the in-
ner joints while transmitting finger motion continuously (Figure
5). To calculate the length of this pin slot, we first measured the
angular displacement of each finger joint using a motion capture
system (OptiTrack, V100 R2) for a grasping motion. Then, using a
simulation in Autodesk Fusion 360, we obtained the minimum pin
length required to achieve this motion range. While this mechanism

1http://lab.plopes.org/#digitusync-files

Figure 6: (a) The linkage has two pairs of variable-length
mechanisms to dynamically change the transmission. (b) It
allows an input force 𝐹1 to be scaled up/down as 𝐹3. (c) It also
allows an input angle 𝜃𝑖 to be scaled up/down as 𝜃𝑜

accommodates various finger poses, it restricts the transmission
of fully-clenched grasping gestures (the maximum range of an-
gle of the first and second joints are 40 degrees and 47 degrees,
respectively).

4.2 Variable transmission mechanism
Furthermore, we added a variable-length linkage, as shown in Fig-
ure 6 (a), that allows for changing the lengths of the four-bar linkage
(not for generating haptic feedback to a user) to optimize the learn-
ing experience.

Force Transmission. Figure 6 (b) shows the model of the mo-
ment of force. 𝐷1 and 𝑑1 represent the linkage length of the con-
nection link 𝑍𝑌 . 𝐷2 and 𝑑2 represent lengths of length-adjustable
linkage. 𝐹1 and 𝐹3 represents an input and output force respec-
tively. These can be described using 𝐹2, 𝑑1,2 and 𝐷1,2 as follows:

{ 𝐹1𝐷1 = 𝐹2 (𝐷1 + 𝐷2) [𝑁 ·𝑚]
𝐹3𝑑1 = 𝐹2 (𝑑1 + 𝑑2) [𝑁 ·𝑚] . Therefore, the output force 𝐹3 can

be described as: 𝐹3 = 𝑡𝐹1 [𝑁 ·𝑚] , in which (𝑡 = 𝐷1
𝐷1+ 𝐷2

· 𝑑1+𝑑2
𝑑1

).
We defined these linkage distances as 𝐷1 = 𝑑1 = 23𝑚𝑚. Thus,
resulting in: t = 23

23+ 𝐷2
· 23+𝑑2

23 . Since we allow the lengths 𝐷2 and
𝑑2 to be changed from 5 to 35mm, we obtain: 0.44 ≤ 𝑡 ≤ 2.29. This
value 𝑡 indicates that the teacher’s finger force is reduced by half
when the variable-length linkage is at its minimum (when 𝑑2 < 𝐷2)
and is doubled when the variable-length linkage is at the maximum
(when 𝑑2 > 𝐷2). As we will see later, we confirmed the relationship
between this value 𝑡 and the force transmission ratio 𝐹3 / 𝐹1.

Angle Transmission. Figure 6 (c) shows the model of the
joint angles 𝜃i and 𝜃o, which represent the input angle of the
teacher’s second finger joint (proximal interphalangeal joint) and
the output angle of the learner’s, respectively. An additional
line 𝐿, angle 𝜃1, and 𝜃2 can be represented as follows: 𝐿 =

𝑠𝑞𝑟𝑡 (𝐴2 + 𝐵2 − 2𝐴𝐵𝑐𝑜𝑠𝜃𝑖 ) in which 𝜃1 = 𝑐𝑜𝑠−1 (𝐴−𝐵𝑐𝑜𝑠𝜃𝑖
𝐿

) and
𝜃2 = 𝑐𝑜𝑠−1 (𝐴

2+𝐵2−𝐶2+𝐷2−2𝐴𝐵𝑐𝑜𝑠𝜃𝑖
2𝐷𝐿

). Therefore, the output angle 𝜃𝑜
can be calculated as: 𝜃𝑜 = 𝜋−𝜃1−𝜃2 . In our implementation, we de-
fined linkage lengths as 𝐴 = 𝐶 = 109𝑚𝑚, 𝐷 = 𝑑1 + 𝑑2, 𝐵 = 𝐷1 +𝐷2.
We used this model to calculate the angular transmission ratio
Δ𝜃𝑜/Δ𝜃𝑖 , which we evaluated in the later section.

Variable-length linkage. Our default method is to provide
users of DigituSync with a manual configuration for the transmis-
sion ratio. Users simply adjust the intended level of transmission
via a slide-joint, as depicted in Figure 7. This mechanism, consisting

http://lab.plopes.org/#digitusync-files
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Figure 7: Users can manually adjust the transmission ratio.
Positions can be fixed by the rubber O-rings in the slide.

Figure 8: Magnets embedded in the linkages enable quick
attachment and detachment of (a) two hands and (b) wrists.
(c) They also fix floating linkages when detached.

of using metal shafts (2mm diameter, 45mm length) and O-rings
(4mm diameter), was designed with sufficient friction that it does
not un-adjust itself but will still be easy to move at the push of a
finger.

Detachable linkage mechanism. To transition between the
coupled and decoupled state of the dual-exoskeleton, we designed
a magnetic attachment mechanism. Small magnet slates are em-
bedded as shown in Figure 8 (a). Those can be detached easily yet
can keep them connected while transferring finger poses. Larger
magnets, depicted in Figure 8 (b), were used for the wrist connec-
tion linkage since this is subject to more force. We also added small
magnets near the linkages of the first joint to avoid having mov-
ing joints when detached, as shown in Figure 8 (c). Attaching and
detaching action require 20s and ∼4s to complete, respectively.

Fabrication. DigituSync is manufactured from methacrylate
resin on a Formlabs Form3 printer. The total weight of the exoskele-
ton is 240g (learner’s side: 118g, teacher’s side: 122g). The rest of
the linkages are manufactured using a laser cutter with a 1.5mm
thick acrylic plate. Each of those has Velcro tapes to fit each finger’s
depth.

5 TECHNICAL EVALUATION: LINKAGE
TRANSMISSION

To validate the force and angular transmission ratio of DigituSync,
we measured the changes in output force and the angle at arbi-
trary combinations of 𝐷2 and 𝑑2, and then compared them with the

Figure 9: Comparison between measured and simulated re-
sults of (a) the force and (b) angle transmission.

previously derived theoretical model. The linkage length𝐷2 was de-
termined according to 𝑑2 by using the minimum and the maximum
length of the variable-length link 𝐿𝑚𝑖𝑛 and 𝐿𝑀𝐴𝑋 , whichwere 5mm
and 35mm respectively, as follows: 𝐷2 = 𝐿𝑀𝐴𝑋 − 𝑑2 + 𝐿𝑚𝑖𝑛 [𝑚𝑚].

Force transmission evaluation. A dummy weight (AAA bat-
tery, 𝑤𝑖 = 11g) was used instead of an actual finger to provide
a more repeatable load. A load-cell sensor (TAL220) was placed
underneath the learner’s finger socket 𝑆𝑍 . The output weight (𝑤𝑜 )
was measured three times for thirteen different combinations of
𝐷2 and 𝑑2. Figure 9 (a) shows the measured ratio of the input and
output force (in orange), plotted alongside the simulated function
(in blue). With a known constant weight when 𝑡 = 1.0 (ratio be-
tween 𝐷2 and 𝑑2), by increasing the linkage’s ratio 𝑡 , the force
transmission ratio also increases linearly, thus it allows variable
force transmission from half up to double the input force (fitting
function: 𝑦 = 1.15𝑥 − 0.13, 𝑅2 = 0.98 ).

Angular transmission evaluation.We also evaluated the rela-
tionship between the input and output angles of the finger motion
transmission. We used the motion capture system (mean calibra-
tion error=0.27mm) and placed reflective markers on the teacher’s
and the learner’s index fingers to measure the second joint (middle
interphalangeal joint) angles. The angles were measured five times
with five different combinations of 𝐷2 and 𝑑2. Then, we calculated
the angular ratio (Δ𝜃𝑜/Δ𝜃𝑖 ). Figure 9 (b) shows the result of the 𝑡
value, measured ratio (fitting function: 𝑦 = 1.17𝑥−1.12), and simu-
lated ratio (fitting function: 𝑦 = 1.03𝑥−1.19). We observed that the
measured angular ratio follows the simulated ratio, suggesting that
our linkage allows variable angular transmission from half up to
double the input angle.

6 USER STUDIES
Our studies were approved by our Institutional Review Board
(IRB19-1431).

6.1 Initial study: piano learning
Goal. We first confirmed that the DigituSync exoskeleton does not
degrade the learner’s performance when compared to a traditional
learning setting. There are many piano learning settings one can
compare against, such as using a screen-based [114], projection
mapping [76, 106], vibration [34, 35, 60], force-feedback [22, 24]
including EMS [15], and so forth; however, as a preliminary evalua-
tion, we first compared with this visual demonstration setting as it
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is the more traditional and widely used method in piano classes to
confirm the DigituSync can be applied to this scenario.

Task & apparatus. Participants were asked to replay a melody
with correct timing and volume after it was performed by an ex-
perimenter. This task design was modeled after prior studies on
drumming skill acquisition [15,22]. We used a force-sensitive MIDI
keyboard (MiDiplus, Classic 25). Apple Logic Pro X and Apple
Script were used for recording and playing with consistent timings
between the demonstration and the replay.

Metrics. We calculated the percentage of correct notes and the
percentage of correct intensities using MATLAB and MIDI Toolbox
1.1 [93]. A note was considered correct if it was played within 150ms
of the experimenter’s timing, which is also typically used in the
studies of drumming [22] or piano [76]. We calculated the intensity
score by averaging the intensity error of all notes from those of the
experimenter.

Melodies. We created two different melodies (see scores in Ap-
pendix) with comparable level of difficulty by flipping the order
of the note sequence, which generates a melody that untrained
participants cannot identify as a flipped-melody.

Procedure. The study consisted of 10 sets of demonstration and
replay phases. There were two demonstration conditions: visual
(Figure 10a) and DigituSync (Figure 10b). In a demonstration phase,
participants were instructed to relax their hands and acquire the
melody (using one of the two conditions). Immediately after the
demonstration, the participant was asked to replay the melody
without the exoskeleton attached to that of the teacher. Our two
melodies and two interface conditions were presented using a bal-
anced Latin-square across participants.

Participants. We recruited twelve right-handed participants
from our organization (six identified as female; six as male; mean
age=22.9 years old, SD=2.7), who were compensated with 10 USD.
No participant had tried an exoskeleton and had no dexterity im-
pairments. Eleven out of twelve participants had some experience
in learning any musical.

Results. Figure 10 (c) shows the error in notes with DigituSync
(mean=5.04, SD=1.59) and the visual demonstration (mean=6.63,
SD=1.25). Figure 10 (c) also shows the error in intensity with
DigituSync (mean=18.84, SD=1.51) and the visual demonstration
(mean=23.84, SD=6.86). A paired t-test revealed a significant differ-
ence in both notes and intensity error between the two demonstra-
tion conditions (notes; t(11) = -2.68, p = 0.02 < 0.05, intensity; t(11)
= -2.47, p = 0.03 < 0.05).

Participants’ feedback. A participant stated “The [DigituSync]
feedback actually helped a lot more than after experiencing the
conditionwith just the teacher [visual] (. . .) [in the visual condition]
I had to utilize much more memorization to get the volume right
compared to when I had the [DigituSync] feedback” (P12). No
participant reported negative feedback regarding our device’s form
factor or weight thanks to the detachable mechanism.

Study conclusion. These results suggest that using the Digi-
tuSync exoskeleton in a piano learning setting does not degrade
their learning performance. Based on these results, we conducted
an exploratory session in a piano class, which we describe later.

Figure 10: Conditions: (a) visual and (b) DigituSync. (c) We
found that using DigituSync does not degrade their learning.

6.2 User study: learning with variable-length
linkages

In this study, we investigate whether DigituSync’s variable trans-
mission linkages can be used to optimize the learning experience.
As such, we compare the users’ feeling of control over their own
movements and how a teacher was responsive to users’ actions that
are critical for preserving their learning motivation, in acquiring a
rhythm taught by the experimenter in two conditions: (1) variable
transmission, in which our variable linkages provide a transmission
directly correlated to the participants’ accuracy while playing the
rhythm (i.e., the better their score, the lower the transmission force
will be—this is just one of the many possible strategies one could
implement, we chose it as it is the simplest in order to explore
the role of the variable-length linkages); and (2) static transmission
(baseline) where the same level of force feedback is provided in all
trials, which emulates conventional hand-over-hand guidance or
using a knitted joint-glove. We collected subjective feedback on
their learning experience as well as measured music performance.

Task. Participants learned a rhythm (in one of two conditions)
from an experimenter then replayed it with correct timing and
volume. To allow participants to compare the two conditions easily,
we simplified the rhythms to use just the index finger. This study
focuses on rhythmic patterns with a shorter range for evaluating
timing (100ms). The same apparatus from preliminary study was
used.

Procedure. The study consisted of a block of 15 trials. Each
trial was comprised of two phases: (1) demonstration, in which the
experimenter leads and plays the rhythm, and (2) replay. Note that,
in this study, we asked participants to try to play together with the
experimenter during the demonstration phases (except the very
first one, in which they were asked to relax). At the end of each
condition, they were asked to answer a 7-point Likert question-
naire and comment at the end of the study regarding their learning
experience. Our two interface conditions and two rhythms were
presented using a balanced Latin-square.

Variable transmission.While in the baseline condition we kept
the linkage transmission at a fixed ratio, as shown in Figure 11 (a),
in the variable transmission condition, the experimenter manually
adjusted the linkage ratio 𝑡 between 0.44 to 2.29 in five increments
based on the accuracy difference of the participants’ current and
last replay trial. The idea behind this simple strategy is that the
participants receive less haptic feedback from the teacher as their
accuracy improved, or vice-versa. In other words, in the case where
the score improves by 1-50%, we decreased by one increment of 𝑡
value (=0.46). In the case where the score improves by more than
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Figure 11: Experimental setup used to explore learning expe-
rience with: (a) static linkage or with (b) variable linkage.

Figure 12: (a) Subjective reporting on the intervention (b)
feeling of control. (average(△), median( | ), IQR, outlier(⃝))

50%, we decreased by two increments of 𝑡 value (=0.93), as shown in
Figure 11 (b). The same logic was applied when the score decreased.

Rhythms.We created two rhythms with comparable difficulty
by shuffling the order of note segments; see scores in Appendix).

Questionnaire. Participants were asked to answer the following
after each condition: (Q1) Did you feel that the experimenter’s
intervention was static or changing as a response to your mistakes?
(static or variable); and (Q2) Please rate howmuch you felt in control
of your movements in this condition (1: not in control, 7: in control).
Finally, at the end of the study, we asked participants “in which
condition you felt that the teacher was able to react better to your
mistakes”. It is noted that we always referred to conditions as “in
this condition” rather than using “static” or “variable” words to
avoid bias.

Participants.We recruited eight right-handed participants from
our local organization (four self-identified as female; four as male;
mean age=22.9 years old, SD=2.7), who were compensated with 10
USD. Five out of eight participants had an experience of learning
any musical instruments (mean duration=8.5 years, SD=3.2). The
experimenter has 10 years of experience with piano and practiced
rhythms beforehand.

Results. While we found there is no difference in the partici-
pants’ performance between both conditions (timing; t(7) = -0.83,
p = 0.43, intensity; t(7) = 0.517, p = 0.62), we did find differences in
their learning experiences across both conditions. First, as depicted
in Figure 12 (a), the participants more often reported feeling the ex-
perimenter’s intervention as responsive in the variable transmission
condition than in the static transmission. Secondly, participants
reported a higher sense of finger control over their movements
(mean=5.1, SD=1.4) in the variable transmission than that of the
static transmission (mean=4.3, SD=1.7), which was confirmed us-
ing a paired t-test (t(7) = 2.97, p = 0.02 < 0.05). At the end of our

study, Six out of eight participants chose the variable condition for
a condition in which “the teacher was able to react better to your
mistakes”.

Participants’ feedback. When asked to justify their preference
for the variable transmission, comments included “weaker linkage
[trials] gives me the freedom to practice more on my own” (P2),
“While I just start learning, the teacher can lead more; while I nearly
learn the rhythms, the teacher can provide less force.” (P4), and,
“I had a different experience. I also felt much more comfortable
(. . .) since the sound (. . .) was being impacted by me and provided
variability and leeway when I repeat the sound” (P8). Some partic-
ipants also stated limitations of the variable condition, including
“[it] changed my perception of the general dynamic range” (P7),
and “sometimes it provided better feedback, but other times it felt
like the inconsistency in intervention pressure caused confusion”
(P6). When asked to justify their preference for the static condition,
two of the participants commented “I liked (. . .) since the interven-
tion felt more consistent” (P6) and “it consistently stimulates my
touching sense” (P5). When interviewed regarding their learning
experience with the variable transmission, comments included “the
first linkage length [high force ratio] have a stronger power to lead
(. . .) the second one [low force ratio] is relatively weaker” (P5). With
the static transmission, comments included “I let the teacher play
(. . .) I found (. . .) it would interfere with the rhythm and pressure
(. . .) also my perception” (P3), “I tried to follow the teacher (. . .) and
I felt like the teacher and I clashed” (P5), and, interestingly, “I do
believe I got better (. . .), as time went on, I got closer to the melody
yet I kept doubting myself” (P8).

Study conclusion. These results suggest that our variable trans-
mission impacted positively, while not compromising performance.
It is also worth noting that learning a new skill has many challenges
beyond improving one’s performance, such as keeping oneself mo-
tivated [96, 97], which, again, the variable transmission seemed to
support better. Yet some participants preferred a static transmis-
sion, the real benefit to note regarding the variable transmission
is that it can also be static and they can choose. There are more
advanced learning strategies that can be coupled with our variable
linkage mechanism, such as [20, 23, 77, 104] as well as additional
sensors, such as electromyography, eye tracking devices [39, 40],
or brain-computer interfaces [111, 112], enabling more accurate
estimation on the user’s state.

Discussion on usability. We also received feedback on the
exoskeleton design such as absorbing personal differences in hand
dimensions and applying this to other parts of the body. These
could be achieved by incorporating computational techniques for
mechanical design [57, 64, 107, 113].

6.3 Exploratory session: feedback from music
teacher

In this session, we explored teaching experience with a professional
pianist in an actual piano class. We asked a tenured music profes-
sor (45 years old, +20 years of teaching) at music college to use
DigituSync anytime during their one-on-one piano class. In this
class, the student was an advanced student (20 years old and more
than 10 years of experience) and had no prior experience in using
the exoskeleton. We provided no instructions whatsoever to the
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Figure 13: (a) A deaf-blind user (middle) is testing the usabil-
ity of DigituSync while receiving instruction from a protac-
tile sign interpreter and (b) playing a rhythm together.

teacher as we wanted to understand if DigituSync affords “walkup
use”.

Teacher’s feedback: The teacher stated "glove was interesting
for my piano classes (. . .) I chose to use it with a more advanced
student, who plays well but does not articulate well yet [articulate
refers to the length of its sound and the shape of its attack and
decay] (. . .) while we were playing a contemporary piece, I put on
the glove and demonstrated how to articulate legato [playing notes
smoothly and connected] and portato [playing notes smoothly
pulsing] to sound distinct [these are two different articulations], as
my student tends to slur these in the same way, [this] was visibly
exciting.” The teacher also elaborated on limitations, “[it] did not
work for any interval, as it was difficult for me to extend their hands
via the glove to play a voice doubling [informal language to playing
the same note an octave above], perhaps a future glove could permit
this and have some more flexibility on the curl position too”.

Participants’ feedback on walkup use: The teacher stated
“surprisingly, I found it easy to use. When I first saw it, I thought
I would never be able to get inside the glove alone, but I was able
to do it and the student too (. . .) after we used this for articulation,
the student played the remainder of the piece with the glove and
I was surprised by it, [student] said it feels very different, but he
quickly was getting used to it”.

Reversing roles: Surprising to us, teacher and student decided
to reverse roles (again, we gave no prompts or even instructions).
Teacher explained “this time I also let my student control my hand,
which was a fun exercise, but also when we broke it – perhaps
having too much fun.".

6.4 Exploratory session: feedback from
deaf-blind users

We also explored using DigituSync with deaf-blind users in a work-
shop, depicted in Figure 13. While these sessions did not carry the
rigor of our controlled experiments, they allowed us to gather in-
sights into how deaf-blind users reacted to DigituSync in a looser
setting. We gave a brief introduction to the protactile sign lan-
guage interpreters. After the interpreters communicated with the
deaf-blind participants, the deaf-blind participants either touched,
grabbed, or moved the exoskeleton without attaching it to their
hands. In this session, three deaf-blind participants (P1, P2, P3) tried
the DigituSync for 15 minutes each.

Participants’ feedback. P1, who was born deaf-blind, attached
the exoskeleton, then received rhythms from the experimenter on
the table, as shown in Figure 13 (a). P1 stated that “[when] move
those different knuckles [as they felt all the fingers move] (..) they

could be stronger so that I can feel it much better”. After I asked
whether this can be used for, P1 stated that “I think this kind of
device would be good for (. . .) supporting a person to change a
specific habit [of fingers, referring to erroneous finger poses]”. We
also received opposite reactions regarding the feedback strength.
P2 tried the exoskeleton with a MIDI keyboard as shown in Figure
13 (b). P2 stated they would prefer to receive feedback on a targeted
part of a finger (alluding to the movements being too strong, con-
versely to P1). Lastly, a P3 used the exoskeleton in midair, similar
to signing, and stated “I think it has a great potential (. . .) such
as teaching cooking for children (. . .) because it would support
memorizing the position of cooking utensils”. P2 and P3 were born
Deaf and lost vision over time.

7 FURTHER OPPORTUNITIES FOR
DIGITUSYNC

We believe there is a range of interesting motor learning scenarios
where users can leverage the benefits of DigituSync: adaptive, real-
time, and congruent haptic communication with walk-up-use and
low-cost form factor.

Figure 14: Application scenarios: (a) Finger braille training;
(b) Hand-over-Hand Guidance; visually impaired persons
receive manual manipulation during therapy or performing
massage.

One such example is in teaching languages based on complex
and fast finger gesture combinations, such as finger braille, an im-
portant tactual communication language used by deaf-blind people,
as depicted in Figure 14 (a). Highly skilled interlocutors and inter-
preters, not only just tap with their fingers to spell letters, but can
also express emotion and attitude with the tapping pressure and
rate [10, 105]. Another interactive space is in physical therapy for
patients who lost some degree of motor function. Physicians make
often use of direct “hand-over-hand guidance” [82], which is ex-
tremely similar to how DigituSync operates. Given the adjustability
of feedback, it might improve patients’ learning experience includ-
ing their motivation as we found in our user study. These could
also include, for instance, teaching how to operate an abacus and
learning acupressure techniques for blind users [9, 75], as depicted
in Figure 14 (b).

8 CONCLUSION
We engineered DigituSync, a passive-exoskeleton that physically
links two hands together, enabling two users to adaptively transmit
finger movements in real-time. We conducted a user study and two
exploratory sessions to evaluate the benefits and challenges of the
DigituSync in potential scenarios: In our user study on adaptive
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learning experience, we examined the role of the variable-length
linkages on the learning experience; we found that while it did
not compromise performance, participants felt more control over
their own movements and felt the teacher’s intervention was more
responsive. Then in our exploratory sessions, we gathered insights
from participants (a piano teacher and deaf-blind people), which
provided inspiration for future development. Finally, we discussed
further opportunities to use DigituSync in haptic communication,
such as assisting the learning of finger braille or how to use tools
including an abacus that would benefit from the passive form factor
of DigituSync.

9 APPENDIX: SCORES OF THE MELODIES &
RHYTHMS

Figure 15: Our two 7-second melodies with comparable diffi-
culty (blue notes in pianissimo, red notes in fortissimo).

Figure 16: Our two 7-second rhythmic patterns with compa-
rable difficulty (with a crescendo section in the middle).
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