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Abstract
Our muscles are the primary means through which we affect the external world, and the sense of
agency (SoA) over the action through those muscles is fundamental to our self-awareness.
However, SoA research to date has focused almost exclusively on agency over action outcomes
rather than over the musculature itself, as it was believed that SoA over the musculature could
not be manipulated directly. Drawing on methods from human-computer interaction and adaptive
experimentation, we use human-in-the-loop Bayesian optimizationto tune the timing of
electrical muscle stimulation so as to robustly elicit a sense of agency over electrically-actuated
muscle movements in male and female human subjects. We use time-resolved decoding of
subjects’ EEG to estimate the time course of neural activity which predicts reported agency on a
trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that
the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we
also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts
agency over muscle movements, suggesting that the “neural correlates of agency” may depend
on the level of abstraction (i.e., direct sensorimotor feedback vs. downstream consequences)
most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that
SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to

external input.

Significance Statement
The sense of agency — the feeling of “I did that” — when directing one’s own musculature is a
core feature of human experience. We show that we can robustly manipulate the sense of agency

over electrically actuated muscle movements, and we investigate the time course of neural
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activity that predicts the sense of agency over these actuated movements. We find evidence of
two distinct neural processes — a transient sequence of patterns that begins in the early
sensorineural response to muscle stimulation and a later, sustained signature of agency. These
results shed light on the neural mechanisms by which we experience our movements as

volitional.
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1. Introduction

Voluntary movements are usually accompanied by an experience of “I did that.” This feeling is
the sense of agency (SoA), which is considered a basic building block of conscious selthood
(Gallagher, 2000; Haggard, 2008). Pathologies affecting SoA — including schizophrenia (Frith,
2012), alien hand syndrome (Panikkath et al., 2014), perceived (non-)control of a phantom limb
(Ramachandran and Hirstein, 1998), automatic “utilization behavior” (Lhermitte et al., 1986),
and learned paralysis (Wolf et al., 1989) — are often characterized by anomalies in the experience

of control over the body itself (i.e., the musculature) rather than external action outcomes per se.

SoA research in healthy populations, however, has focused primarily on external
consequences of action (Haggard, 2008, 2017). While some studies have manipulated bodily
agency by delaying visual feedback from movements, such manipulations leave intact the
somatic sensation of muscle movement, over which the subject might still feel agency in the
absence of SoA over the decoupled visual stimulus (Tsakiris et al., 2010; Abdulkarim et al.,
2023). Others have noted the lack of experimental paradigms addressing “narrow” SoA over
muscles as opposed to “broad” SoA encompassing action outcomes (Christensen and Griinbaum,
2018). The field often assumes conclusions drawn from paradigms investigating SoA over a tone
following a button press will generalize to other classes of agency judgments. As such, the
literature tends to treat SoA as a homogenous phenomenon always accompanied by the same
neural correlates. However, an alternative hypothesis is that the neural correlates of SoA may
vary as a function of modality (e.g., proprioceptive vs. auditory) or the level of abstraction for a
given judgment (Charalampaki et al., 2022). Indeed, it has been argued current models may not
generalize to SoA over the musculature (Christensen and Griinbaum, 2018) or over thoughts

(Frith, 2012). This discrepancy bears on a fundamental question of whether mechanisms that
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give rise to the experience of an agentic self are common across scales of biological and social-
behavioral organization — and if not, how and why do we assign agency to the same unified self

at these different scales (Veillette et al., 2023a)?

One reason for the shortage of paradigms assessing SoA over movements is that control
over one’s own muscles is normally unambiguous. Indeed, previous attempts to elicit SoA for
experimenter-evoked (e.g., by TMS) movements have not succeeded (Haggard and Clark, 2003;
Christensen and Griinbaum, 2018), leading to the conclusion that “involuntary movements are
never accompanied by a sense of agency” (Haggard, 2017). However, since cognitive scientists
favor indirect SoA measures such as intentional binding (perceived delay) between actions and
outcomes, these findings primarily reflect SoA over outcomes rather than SoA over the muscles
(Haggard et al., 2002). Meanwhile, human-computer interaction researchers have begun
investigating SoA in interfaces that use electrical-muscle stimulation (EMS) to drive users’
muscles. They find, in contrast, that subjects report EMS-caused movements as self-caused so
long as stimulation temporally aligns with users’ endogenous intention to move (Kasahara et al.,
2019, 2021; Tajima et al., 2022). Cognitive neuroscientists have yet to embrace these findings,
partly because self-reports may result from response biases (Dewey and Knoblich, 2014), lacking

convergent validation from neural measurements.

Thus, in the present work, we “preempt” subjects’ endogenous movements with EMS
during a cue-response reaction time task, using manipulating stimulation timing to control the
proportion of EMS-caused movements perceived as self-caused. Using time-resolved decoding
of subjects’ trial-by-trial EEG, we show that cortical activity predicts agency judgments about
resulting muscle movements as early as 83 ms following stimulation, showing that subjects’ self-

report has a basis in early, pre-conscious sensorimotor processing — not just a response bias.
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Notably, this result differs from those obtained using typical button-tone paradigms, where early
evoked responses (to tones) have repeatedly failed to predict subjective agency judgments (Kiithn
et al., 2011; Timm et al., 2016). Finally, an exploratory analysis shows that fractal measures also
predict SoA, suggesting that complexity of sensory processing may differ for sensations

perceived as movement feedback.

2. Materials and Methods
2.1. Methods Summary

The goal of our experimental design was to evoke movements using electrical muscle
stimulation (EMS) in which roughly 50% of such movements were perceived as self-caused
(agency) and 50% as EMS-caused (non-agency), even though all such movements are in fact
EMS-caused. Previous work has shown that EMS-caused movements are perceived as self-
caused if they modestly preempt subjects’ natural movements in a reaction time task (Kasahara
et al.,, 2019; Tajima et al., 2022), and varying the timing of stimulation has been used to
manipulate agency (Kasahara et al., 2021). However, this manipulation results in the stimulation
latencies being systematically different between agency and non-agency trials, presenting a clear
confound for neural analysis. To this end, we designed a procedure in which stimulation timing
is tuned on a per-subject basis to a latency at which subjects report (without further manipulation
of stimulation latency) that movements were self-caused on approximately half of trials (see 2.3
below). This results in maximally similar distributions of stimulation latency across agency and

non-agency trials.

In our analysis, we aim to identify patterns in the scalp EEG response to muscle

stimulation that robustly predict whether resulting muscle movements are perceived as self-
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caused or perceived as EMS-caused on a trial-by-trial basis, with a particular focus on the
temporal characteristics of those patterns. Firstly, we train a linear classifier at each time (relative
to stimulation onset) throughout the epoch, and test its generalization performance across
subjects and across time (see 2.4.2). An advantage of this approach is that it gives us information
not just about when patterns that predict agency emerge, but how long those pattern remains
present and continually predictive (King and Dehaene, 2014). This allows us to differentiate, for
instance, patterns of neural activity that appear only transiently from those that are sustained over
time. In addition, we assess whether complexity measures of the EEG response — the fractal
dimension, and index of signal complexity, and the Hurst exponent, and index of long-range
temporal dependency — predict trial-by-trial SoA. These complexity features allow us to uncover
some of the qualitative characteristics of neural dynamics (e.g. sensitivity to perturbation, scale-
freeness or self-similarity) in the presence and absence of SoA, though it should be noted since

this latter analysis was exploratory, its evidential value should be weighted accordingly.

2.2. Participants and Ethics Statement

25 University of Chicago undergraduate students (6 male, 19 female, ages 19-24)
participated in the study; however, two subjects were subsequently excluded for noncompliance
with task instructions (i.e., one admitted to letting the electrical stimulator perform the task
without attempting a volitional button press, and another pressed the button continually to speed
through the task instead of when cued). Participants were recruited through the University of
Chicago’s human subject recruitment system, SONA Systems. All subjects gave written,
informed consent before participating. All of the methods performed in the study were in

accordance with relevant safety and ethics guidelines for human subject research and were
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approved by the Social and Behavioral Sciences Institutional Review Board at the University of

Chicago (IRB19-1302). This study was not a clinical trial.

2.3. Experimental Design

Subjects completed three blocks of trials: a pretest block (30 trials), a stimulation block
(250 trials), and a posttest block (30 trials). After initiating each trial, subjects waited for a visual
indicator to cue their movements (see Figure 1b). After the visual indicator was triggered (2-4
seconds, uniformly distributed after trial start), subjects attempted to press a button (on a Cedrus
RB-620 button box; California, United States) as quickly as possible. After the button was

pressed, the trial ended.

During the stimulation block, however, electrical muscle stimulation (EMS) was applied
to the forearm after the cue to move, with the aim of preempting subjects’ self-caused movement
with an EMS-caused movement (see Figure 1c). After each trial, subjects were asked to report

whether they caused the movement (agency) or the EMS caused the movement (non-agency).

Stimulation timing was adjusted on a trial-by-trial basis using a Bayesian optimization
procedure designed to apply EMS as close as possible to the stimulation latency at which
subjects would report agency with 50% probability (see Figures lc, 2). Specifically, after each
trial, we fit a Bayesian logistic regression predicting the probability of SoA from stimulation
latency with a log-normal prior on the 50% threshold, centered 40 ms before subject’s mean
reaction time observed during the pretest block and a log-normal (and thus constrained to be
positive) slope prior. This 40 ms prior on preemptive timing was based on that reported in
previous work (Kasahara et al., 2019, 2021). Each trial’s stimulation latency was drawn from the

posterior distribution (truncated between 50-600 ms post-cue) of the 50% threshold in the
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logistic function fit after the previous trial. If the subject pressed the button before stimulation
was delivered, stimulation occurred immediately upon the button press so that the onset of the
electrical stimulation, which causes a perceptible though painless tingling sensation on the skin,
was always temporally confusable with that of the movement. However, due to the speed at
which the optimization procedure converges to reliably preempt subjects’ movements, such

instances were quite rare (see 3.7 in Results).

Visual stimulus presentation was implemented using PsychoPy (Peirce, 2007) and
Bayesian optimization using the Python-embedded probabilistic programming language Pyro

(Bingham et al., 2019). All code has been made available (see 2.7).

2.4. Statistical Analysis
2.4.1. Manipulation Checks and Outlier Removal
First, outlier removal was applied to remove trials in which muscle movement was not caused by
electrical stimulation. Thus, we removed trials in which (a) subjects pressed the button prior to
stimulation, (b) the recorded response time was outside the stimulation time window (i.e. greater
than 600 ms), or (c) the lag between the EMS pulse and the corresponding button press fell
outside of the middle 95% of the best fit log-normal distribution, indicating ineffective
stimulation or the subjects’ endogenous movement coinciding with the EMS-caused movement.
These steps removed an average of 30.8 trials per subject, after measured “reaction time” (button
press) is a roughly linear function of the stimulation latency (see Figure 3b).

To assess whether we were truly preempting subjects’ movements, we then fit a Bayesian
multilevel model to the trial-by-trial reaction times in each experiment block with the Bambi

package (Capretto et al., 2022) using the conservative default priors (Westfall, 2017). If we were



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

Running Title: Agency over Muscle Movements

preempting subjects’ movements, then reaction times in the stimulation block should be faster
than in both the pretest or the posttest block.

As a final manipulation check, we then assessed whether stimulation latencies differed
systematically between agency and non-agency trials. While prior work has shown that agency
judgments vary as a function of stimulation latency (Kasahara et al., 2019, 2021; Tajima et al.,
2022), the aim of our Bayesian optimization procedure was to minimize this confound by
maximizing the overlap in stimulation latencies across agency and non-agency trials.
Consequently, we fit a logistic regression predicting agency judgments from stimulation latency
(with a random effect per subject, as in our EEG decoding analysis) to test whether any residual

relationship between the two is strong enough to drive our EEG results.

2.4.2. Linear EEG Decoding

After preprocessing of the EEG signal (described in 2.6), we assess the temporal dynamics of
patterns which differentiate agency and non-agency trials using the temporal generalization
method (King and Dehaene, 2014). In this approach, a linear classifier is trained on the pattern of
voltages at each timepoint (using a training set), and then its classification performance is
quantified at every other timepoint (using a test set), yielding information about both the
occurrence and duration of neural patterns which predict the outcome of interest.

In our case, we use a logistic regression (fit using generalized estimating equations to
account for subject-level random effects) as a linear classifier (Liang and Zeger, 1986; Seabold
and Perktold, 2010) to predict agency judgments, and we quantify classification performance
using the area under the receiver-operator curve (ROC-AUC), a non-parametric, criterion-free

metric of class separation. By “criterion-free” we mean that, unlike metrics such as accuracy

10
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which depend on a particular decision boundary, ROC-AUC reflects the tradeoff between false
positives and false negatives across all possible decision boundaries; due to its weak
assumptions, approximately normal distribution under the null hypotheses, and robustness to
class imbalances, ROC-AUC is often recommended for multivariate pattern analyses of the EEG
(King and Dehaene, 2014). Classification performance is calculated only on hold-out subjects
(i.e. subjects not seen during classifier training), in a stratified 10-fold cross-validation scheme
repeated 10 times. Cross-validated ROC-AUC scores are compared to chance performance
(ROC-AUC = 0.5) using a one-sample #-test with a variance correction to account for non-
independence between ROC-AUC values computed across cross-validation splits (Nadeau and
Bengio, 1999).

This results in a Nymes X Nyimes Matrix M, where M;; is the performance of the classifier
trained at time i evaluated at time j, as well as a p-value for each (i, j) pair. The “shape” of
above-chance decoding performances can then be interpreted as providing information as to the
temporal characteristic of predictive patterns of neural activity. For instance, if a pattern is
predictive only on the diagonal (i = j), that pattern is transient. On the other hand, if
classification performance remains above chance off-diagonal (j > i), then one can conclude the
same pattern persists (and continues to predict SoA) across time. However, such conclusions are
only licensed if one corrects for multiple comparisons using a method that allows inference about
the “shape” of an effect, which common cluster-based corrections in the EEG literature do not
(Sassenhagen and Draschkow, 2019). We use All-Resolutions Inference (Rosenblatt et al., 2018),
which can compute simultaneous lower bounds on the true positive proportion in each cluster
across all Npes X Nimes POssible clustering thresholds. This approach conveys uncertainty about

the localization of true effects within clusters. For instance, if the proportion of true positives in a

11
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cluster is low, then one can conclude there is are true positive effects within the cluster but it is
unclear precisely where; conversely, if the proportion is high (e.g., >95%), then the localization

is quite certain.

2.4.3. Complexity-based EEG Decoding

In this analysis, we assessed whether certain complexity measures of EEG response to
stimulation — the fractal dimension and the Hurst exponent — could predict agency judgments.
These metrics measure nonlinear properties of timeseries which can be used to inform qualitative

claims about those timeseries’ underlying dynamics.

The fractal dimension, which we estimate using Higuchi’s algorithm (Higuchi, 1988), is a
measure of the complexity or “roughness” of a time series (or of its underlying dynamical
attractor). The fractal dimension of both the background EEG and the EEG response to
perturbation is highly predictive of states of consciousness (Kesi¢ and Spasié, 2016; Ruiz de
Miras et al., 2019), consistent with some accounts of conscious awareness (Oizumi et al., 2014).
Some preliminary evidence suggests that fractal dimension is higher for conscious percepts that
are internally generated (e.g. mind wandering), making it a reasonable candidate predictor for
sense of agency (Ibafiez-Molina and Iglesias-Parro, 2014). However, the interpretation of the
fractal dimension on its own it ambiguous; it can be interpreted as reflecting how “self-similar”
or “scale-free” a time series is, or alternatively as reflecting the local complexity of its dynamics.

These interpretations can be disambiguated in the context of the Hurst exponent.

The Hurst exponent, which we estimate using rescaled range analysis, is a measure of

long-range temporal dependencies in a time series (Qian and Rasheed, 2004). In the cognitive

12
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neuroscience literature, these long range dependencies have been argued to reflect how much
local events — such as an external input — can alter the course of a neural system, assuming that
events which substantially impact the system should have consequences which persist in time
(Churchill et al., 2016; Kardan et al., 2020; Zhuang et al., 2022). Hurst is notably suppressed in
those suffering from psychiatric conditions associated with an impaired sense of agency

(Sokunbi et al., 2014; Stier et al., 2021).

If a time series is strictly self-similar, then the fractal dimension D will be related to the
Hurst exponent H by the deterministic relationship D + H = 2 (Gneiting and Schlather, 2004),
but these metrics have been reported to diverge in EEG data despite the 1/f power spectrum of
resting/background EEG implying some degree of self-similarity in the signal (Martis et al.,
2015). Unfortunately, estimates of the Hurst exponent computed from time-series as small as our
single-trials are known to be biased (Oliver and Ballester, 1998; Eke et al., 2000, 2002). While
the bias of our Hurst estimates prevents us from testing the D + H = 2 relationship directly,
within-subject variation in trial-by-trial Hurst exponents estimated from EEG have been shown
to be sensitive to cognitive functions (Kardan et al., 2020). Thus, if the EEG time series is self-
similar or scale-free, then should the fractal dimension increase with agency, Hurst should
decrease and vice versa. However, if they both positively or both negatively covary with agency
(or one covaries and not the other), then the EEG response to stimulation is unlikely to be self-

similar.

Since we perform this analysis at the electrode-level (instead of training a single classifier
on all electrodes), we apply a current source density transformation before computing per-
electrode complexity measures to increase the interpretability of spatial information in the EEG

signal (Kayser and Tenke, 2015). For each electrode and subject, then, we compute the ROC-

13
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AUC between both of these metrics and subjects’ self-reported agency. Since there are no fit-to-
the-data parameters in this analysis, no cross-validation scheme is necessary; a one-sample, two-

sided #-test is used compare subject-level decoding performance to chance (ROC-AUC = 0.5).

2.5. Electrical Muscle Stimulation

Before the experiment began, two EMS electrodes were applied to the skin above the flexor
digitorum profundus muscle on the right (dominant) forearm, which is an easily accessible
muscle that moves the ring finger, which subjects used to press the button during the experiment.
Stimulation was performed with a RehaStim 1 device (HASOMED GmbH, Mageburg, Germany).
On each trial, muscle actuation consisted of a single, biphasic pulse of constant current

stimulation lasting 900 microseconds (400 ps positive, 400 us negative, separated by 100 us).

Before beginning the experiment, we calibrated the stimulation amplitude to the
minimum intensity required to reliably move the subject’s finger. The calibration procedure was
as follows: (a) The subject placed their ring finger on the button that would be used during the
experiment and was instructed not to move their hand. (b) Starting at an intensity of 1 mA, we
stimulated the subjects’ arm 10 times. If fewer than 10 button presses were registered, then we
iterated the intensity by 1 mA and repeated. (¢) We stopped increasing the intensity upon
achieving 10 consecutive actuated button presses, or if a conservative safety limit of 25 mA was

reached.

2.6. EEG Acquisition and Preprocessing

14
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EEG was recorded with 64 active Ag/AgCl electrodes (actiCHamp, Brain Products, Munich,
Germany) placed according to the extended 10-20 system. At the time of recording, the
electrodes were referenced to Cz and sampled at 10,000 Hz. Two of the 64 electrodes (which
would have been AF7 and AF8 on the typical actiCAP layout) were dropped below the left and
right eyes so that they could later be re-referenced to become EOG channels. Experiment events
were marked in the EEG recording using TTL triggers and later corrected with a photo-sensor
(Brain Products, Munich, Germany) on the subjects’ screen. The precise subject-specific
positions of the 62 head electrodes were measured at the end of each recording using a CapTrak

(Brain Products, Munich, Germany).

EEG was later preprocessed in Python using MNE-Python package (Gramfort et al.,
2014). First, we fit a multi-taper estimation of the sinusoidal components at the line noise
frequency and its first two harmonics to partially attenuate electrical interference before
interpolating the stimulus artifact. Then, the electrical artifact from the EMS pulse was removed
by linearly interpolating over the interval starting 5 ms before and ending 10 ms after the event
timestamp. Then, after interpolation, we applied an additional FIR notch filter at 60 Hz and its
harmonics up to the intended upper passband edge (see below) to thoroughly clean the data of
line noise, and then resampled the data to 5,000 Hz to improve the speed of computation for

subsequent preprocessing steps.

Next, we applied common preprocessing operations in adherence with the standardized
PREP preprocessing pipeline for EEG data (Bigdely-Shamlo et al., 2015) using the
implementation in the PyPREP package (Appelhoff et al., 2022). This pipeline robustly re-
references the EEG signal to the average of all electrodes and interpolates electrodes it

determines have poor signal quality; see the PREP paper for a full description (Bigdely-Shamlo
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et al.,, 2015). A record of which channels were interpolated is available in subject-specific

preprocessing reports (see 2.7).

Then, we filtered the data to the frequency band used for analysis. We used a single low
cutoff of 1 Hz to remove low-frequency drift, but we used different high cutoff values for the
different analysis described in 2.4.2 and 2.4.3 above. For linear decoding (2.4.2) we used a 30
Hz high cutoff; this filter setting is common for the analysis of event related potentials, as this
level of temporal smoothing helps to align short neural events across subjects (Luck, 2014), and
we posited such smoothing would likely improve sensitivity for between-subject decoding as we
employ here. However, since fractal dimension is fundamentally a measure of signal roughness,
which would be distorted by anything that would artificially smooth the signal, we used a more

liberal 70 Hz high cutoff for the fractal analysis described in 2.4.3.

We then removed EOG contamination of the EEG signal. We decomposed to EEG data
into 15 independent components (ICs) using the Fast/CA algorithm (Hyvarinen, 1999). Then, we
correlated each IC with the EOG channels, z-scored the correlation coefficients, and deemed an
IC to contain eye artifact if the absolute value of its z-score exceeded 1.96. Those ICs were
zeroed out to remove them from the original data. Plots of the scalp topographies of removed ICs

for each subject can be found in their preprocessing reports (see 2.7).

Subsequently, we segmented the data into epochs starting 100 ms before the onset of
stimulation and ending 500 ms after stimulation. We then estimated the peak-to-peak rejection
threshold that would be used to identify trials containing unwanted artifacts using the Autoreject
package (Jas et al., 2017), which estimates the optimal threshold as that which minimizes the 5-

fold cross-validated root-mean-squared difference between the mean of the training folds and the
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median of the testing fold, a robust proxy metric for signal-to-noise. The resulting per-subject

rejection thresholds are recorded in each subjects’ preprocessing report (see 2.7).

Since the visual evoked response to the movement cue is unlikely to be over by the time
of stimulation, we attempted to remove the visual evoked response from our epoched data to
minimize confounds. To do so, we computed evoked responses to both the visual and electrical
stimuli simultaneously using a regression-based overlap correction on the continuous (non-
epoched) data, excluding second-long chunks of the data in which peak-to-peak amplitude
exceeds the rejection threshold (Smith and Kutas, 2015); conceptually, this is very similar to the
way generalized linear models (GLMs) are used to deconvolve hemodynamic responses in fMRI.
Then, the overlap-corrected visual evoked response was aligned with the epoched version of the
data and subtracted out. Thus, the average visual response to the movement cue was removed
from the stimulation-locked epochs. Subject-level evoked responses can be found in our open

dataset and are visualized in the subject-specific preprocessing reports (see 2.7).

Finally, the rejection threshold was applied to the cleaned and overlap-corrected epochs,
removing trials still contaminated by artifacts. The surviving epochs were down-sampled to
twice their high-cutoff frequency for computational expediency and saved for further analysis.
This epoched data is available in our open dataset, and subject-level trial yields are recorded in

the accompanying quality check reports (see 2.7).

2.7. Data and Code Availability

Code for running the experiment can be found on GitHub (github.com/apex-lab/agency-

experiment) and in a permanent archive on Zenodo (doi.org/10.5281/zenodo.7894011).
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Similarly, all data analysis code, including EEG preprocessing code, can be found at

github.com/apex-lab/agency-analysis and https://doi.org/10.5281/zenodo.7894007. All data,

including both raw data, preprocessed derivatives, and post-preprocessing quality check reports

for each subject, can be found on OpenNeuro (doi.org/10.18112/openneuro.ds004561.v1.0.0).

2.8. Statistical Power

There is no widely agreed-upon approach for estimating the statistical power for detecting novel
EEG effects, in which the spatiotemporal distribution of the effect is unknown a priori, as we
recently reviewed (Veillette et al., 2023b). Statistical power for EEG effects depends not just on
the number of subjects but also on the number of trials, and how these two design considerations
interact to affect power seems to differ between components of the EEG response (Boudewyn et
al., 2018; Hall et al., 2023; Jensen and MacDonald, 2023). However, statistical power for well-
known EEG effects has been studied using a recently introduced Monte Carlo simulation
approach (Boudewyn et al., 2018), and it is worth considering how well our study is powered for
detecting effects reported in the literature. While we and others have found, using such a
simulation-based approach, that a relatively small number of subjects and trials achieves very
high statistical power for detecting the presence of seven endogenous EEG evoked response
effects (Jensen and MacDonald, 2023; Veillette et al., 2023b), our main study result — that which
differs from previous EEG studies of SoA — concerns an early (<200 ms) effect, and such effects
usually reflect amplitude changes in exogenous response components present in both conditions
rather than the presence or absence of an endogenous component. This more realistic case has
been studied for three early evoked response components (Hall et al., 2023). Closest to our

sample size, Hall and colleagues report that a within-subject design with a sample of 25 subjects,

18



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

Running Title: Agency over Muscle Movements

each having 120 trials per condition, achieves a power of at least 0.8 for detecting a 1.4 uV
amplitude difference in the N1 component (in the window of 84-124 ms), a 1.3 pV difference in
the Tb component (124-164 ms), and a 1.7 puV difference in the P2 component (151-191 ms)
with a significance level of 0.05. Based on this comparison, we would expect our linear
classifiers to be sensitive (i.e. with power of roughly 0.8) to amplitude differences on the order of

~1.5pV.

3. Results

3.1. Bayesian optimization effectively controls the proportion of trials perceived as self-caused.

The Bayesian Optimization procedure resulted in trial-by-trial stimulation latencies honing in on
some threshold estimate throughout the stimulation block. A representative time course is shown

in Figure 2.

After removing trials in which stimulation failed to produce a muscle movement (and
therefore the “reaction” time was not a function of stimulation latency), our multilevel model of
the recorded reaction times estimated a 99.9% posterior probability that button presses occurred
earlier in the stimulation block than in either of the other blocks. In particular, we estimate that
“reaction” times resulting from EMS-actuated movements were between 17.5 ms and 65.0 ms
faster than true reaction times in the first (pre) block with 95% probability, and between 13.8 ms
and 43.9 ms faster than those in the final (post) block. A nominal speedup between the pre and
post blocks was observed with 90.6% probability (95% HDI: [-6.7 ms, 32.8 ms]), suggesting that
subjects may have improved their reaction times by the end of the task, but not enough to

account for the much lower reaction times in the stimulation block. Posterior distributions for the
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(group) mean response times in each condition are shown in Figure 3. Taken together with the
near linear relationship between stimulation latency and reaction time, we can conclude that
movements were usually caused by muscle stimulation rather than the subject, effectively

preempting subjects’ volitional movements.

While it is evident that muscle movements in the stimulation block (after outlier removal)
were overwhelmingly caused by EMS rather than by the subject, subjects still reported that they
caused roughly half of the movements. Overall, after outlier removal (see Figure 3), 51.98% of
all trials across all subjects were judged as self-caused. On average, subjects reported that they
caused 50.99% (SD: 14%) of movements. In other words, the Bayesian Optimization procedure
was effective at controlling the proportion of trials in which movements were experienced as

self-caused, generating a roughly 50-50 split of agency vs. non-agency trials.

While it is understood that agency judgments in this task paradigm vary as a function of
the stimulation latency (Kasahara et al., 2019, 2021; Tajima et al., 2022), our Bayesian
optimization procedure converges to a narrow latency range around the 50% agency threshold
quickly enough to attenuate this confound. A logistic regression predicting agency judgments
from stimulation latency (with a subject-level random effect) — notably the same approach we
use to predict agency judgments from the EEG signal — fails to find a statistically significant
relationship between the two (beta = 0.95, 95% CI: [-0.91, 2.82], p = 0.315). Thus, any residual
relationship between stimulation latency and SoA is unlikely to explain our EEG findings (see

below).
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3.2. Distinct early and late neural processes predict agency judgments.

Our linear decoding procedure showed above-chance decoding performance across subjects,
reaching up to ROC-AUC = 0.587; thus, the patterns which we report predict agency judgments
generalize across individuals. While we report the true-positive proportion within clusters across
all clustering thresholds (see Figure 5b), we will focus primarily on the clusters in which the true
positive proportion exceeds 95%, since these clusters are where we are sufficiently certain about
the localization of the effect (Rosenblatt et al., 2018). The grand-average EEG evoked response
to muscle stimulation is provided, for visualization only, in Figure 4; this may be useful context

when considering predictive topographies, as shown in Figure 6.

The earliest such cluster occurs 83 ms after the onset of muscle stimulation (adjusted
threshold: p < 4.5 X 107°). This is substantially earlier than previous studies have localized the
earliest predictors of agency judgments (see Discussion), which may reflect a distinct role of
low-level sensorimotor processes in agency judgments pertaining to the musculature itself, but
less so to downstream sensory consequences of action. When comparing the patterns our
decoding model selects for (see Figure 6) to the average evoked response (see Figure 4), one
notes that the polarity of the pattern that predicts SoA is opposite the average response,
indicating that the classifier would predict a self-agency judgment as the result when the sensory
response is suppressed—a finding consistent with sensory attenuation (Voss et al., 2006).
Classifiers trained at earlier times do not generalize to predict SoA at later times (see Figure 5),
indicating that early prediction likely reflects a sequential chain of transient representations
during sensorimotor processing (King and Dehaene, 2014). Later in the epoch, however, the

temporal dynamics of the predictive patterns change to reflect a single, sustained neural signature
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that predicts SoA starting by at least 250 ms after stimulation and persisting at least until the end

of the epoch (p < 0.003).

3.3. Fractal complexity of brain activity predicts agency judgments.

Notably, trial-by-trial fractal dimension predicted SoA at almost every electrode (see Figure 7),
reaching an ROC-AUC of 0.614 at electrode C1 (adjusted threshold: p < 0.027), even after the
current source density transformation of the EEG signal was applied to attenuate the effects of
volume conduction (see Methods). This suggest that the (local) complexity of the brain activity
is increased uniformly throughout cortex following muscle movement when that movement is
perceived as self-caused (as compared to when it is not perceived as self-caused). This is
consistent with the previous observation that neural activity corresponding to self-generated

percepts has a higher fractal dimension (Ibafiez-Molina and Iglesias-Parro, 2014).

On the other hand, the Hurst exponent only predicted SoA at a single electrode at position
FC1 (ROC-AUC = 0.559, p = 0.00006), located above cortical regions involved in motor control
and planning, contralateral to the arm in which stimulation occurred (though we did not vary the
arm used for stimulation, so we would caution against interpreting this as a strictly contralateral
effect, though it is suggestive). This finding suggests a much more selective modulation of long-
range temporal dependencies, such that the activity of specific frontocentral cortical regions
becomes globally less to local perturbations in the absence of SoA—or, conversely, frontocentral
areas are more sensitive to inputs in the presence of SoA. Notably, since the Hurst exponent
(albeit only in one electrode) and fractal dimension both positively covary with agency, defying

the strictly inverse relationship they would show in a strictly self-similar time series (see
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Methods 2.4.3), the EEG response to muscle movement appears to depart from (full) scale-
freeness, at least over FCI1. This divergence would allow the local complexity of and the
temporal persistence of perturbations to neural activity to be modulated independently (see

Discussion).

4. Discussion

Our findings advance our understanding of how the sense of agency (SoA) is generated in
the brain, with important implications for the relationship between conscious self-awareness and
unconscious self-referential processing. In particular, the time course neural activity predicting
SoA in response to muscle stimulation is more consistent with classical sensorimotor monitoring
accounts (Wolpert et al., 1995; Blakemore et al., 2000) than previous studies have shown
comparing the neural responses to self- and other-caused tones (Kithn et al., 2011; Timm et al.,
2016). While results still leave room for common downstream correlates of agency, they suggest
that early responses differentiating self and other may be more modality specific than previously

thought.

In the comparator model of SoA, originally imported from the motor control literature
(Wolpert et al., 1995), sensations are compared to the intended or predicted sensory
consequences of actions, and then congruent feedback is deemed self-caused and incongruent
feedback externally caused (Feinberg, 1978; Frith, 1987; Gallagher, 2000). Since it is well
documented that early sensory responses, especially those that are predictable, are attenuated
during movement (Blakemore et al., 2000), it seemed plausible that the same machinery could
parsimoniously account for conscious self-other discrimination. While this simple model is still

the basis of most modern accounts of SoA, it is now understood that the mechanisms of
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conscious SoA diverge from low-level sensorimotor monitoring (Synofzik et al., 2008; Frith,

2012; Zaadnoordijk et al., 2019; Press et al., 2023).

To this effect, recent studies using typical paradigms, which probe the perception of
causality between a button press and subsequent tone (i.e., “broad” sense of agency over action
outcomes), have failed to find a relationship between the neural processes which would be
affected by low-level sensorimotor monitoring — that is, the early, pre-conscious (< 200 ms)
response to sensory stimulation — and conscious SoA (Voss et al., 2006; Kiihn et al., 2011; Ohata
et al., 2020). Timm and colleagues report a full dissociation, showing that comparator-model-like
suppression of early responses to self-caused sensation occur in both the presence and absence of
SoA (Timm et al., 2016). Since decades of research tell us early (< 200 ms) sensory responses
reflect preconscious, rather than conscious, processing of the sensory stimulus (Libet et al., 1967,
Sergent et al., 2005; Dehaene and Changeux, 2011), these findings have been interpreted as
meaning that temporally early “exogeneous” neural responses (i.e., those that are a direct
consequence sensory input) do not inform agency judgments, but later “endogenous” neural
responses (e.g., P3 component) associated with conscious attention do (Kiihn et al., 2011). None
of these authors argue against the general idea of a comparator, but rather suggest that the
comparison takes place at a higher level of abstraction than in the low-level sensorimotor

monitoring used to guide motor learning (Wolpert et al., 2011).

In contrast, we find patterns in the early sensorineural response to stimulation predicts
SoA even when that sensation was not actually self-caused, as we exclusively analyzed trials in
which movements were caused by EMS. The critical difference is that we measured the neural
response to muscle stimulation, and subjects made agency judgments about the muscle movement

itself rather than a downstream consequence of movement. Thus, the mechanisms that give rise
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to narrow SoA over the musculature may overlap with basic sensorimotor processing more than
those mechanisms that give rise to SOA over action outcomes more far removed from a subject’s
motor intention (Charalampaki et al., 2022). Previous work manipulating bodily agency by
altering the visual feedback from movement (leaving somatic feedback channels intact) has
primarily used fMRI (Tsakiris et al., 2010; Abdulkarim et al., 2023) or EEG methods lacking the
temporal resolution of the present approach (Kang et al., 2015); consequently, it is not totally
clear whether our very early (preconscious) decoding results differ from previous findings
merely because of our focus on SoA over body movements or because we additionally perturbed
somatic (not just visual) feedback channels. Regardless, our data support the view that the
earliest (pre-conscious) correlates of conscious SoA may differ based on context (i.e., what is
one being asked to make a judgment about?), modality (e.g., proprioceptive or auditory), or level

of abstraction.

However, it is worth noting that the earliest neural correlates of agency are not the end of
the story. Indeed, the comparator model for SoA has largely been usurped by dual-process
models in which the outcome of an initial comparator process is integrated with prospective,
prior information to produce a final agency judgment (Synofzik et al., 2008; Haggard, 2017;
Legaspi and Toyoizumi, 2019), and there is no clear theoretical for why or how multiple
comparator processes taking place at multiple levels of abstraction may not be integrated into a
single agency judgment. In fact, the shift we observe from transient to sustained patterns of
neural activity predicting agency is quite consistent with that predicted by dual-process models
of action processing (Del Cul et al., 2009; Charles et al., 2014). Specifically, the sustained nature
of the predictive voltage patterns is consistent with a previously observed signature of high-level

novelty/error detection that has been argued to require conscious awareness (Dehaene and King,
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2016) and previously proposed to inform agency judgments (Kiihn et al., 2011). An intriguing
possibility then, which hybridizes the competing views proposed in the introduction, is that pre-
conscious (roughly < 200 ms) predictors of SoA judgments will be context specific, but post-
consciousness ‘“neural correlates of self-awareness” integrate across modality-specific
comparators. We do not manipulate awareness of action and outcomes here, so it is up to future
work to test this hypothesis directly. Such investigations, which can compare sense of agency
over actions with SoA over those actions’ downstream outcomes, are made possible by

extending the paradigm we introduce here.

Further, both the fractal dimension — a measure of local signal complexity or “roughness”
— and the Hurst exponent — a global measure of long-range correlation in a signal, indicative of
how long a perturbation (e.g. sensory input) in the measured system would persist in time — were
able to classify trial-by-trial SoA. However, the Hurst exponent was only predictive of SoA in a
single frontocentral electrode, whereas fractal dimension was robustly predictive across the
whole scalp. Both of these measures are often interpreted as reflecting a self-similarity or scale-
free property of a time series, often appealing to theories of self-organized criticality as an
explanatory framework (Churchill et al., 2016; Kardan et al., 2020; Zhuang et al., 2022). Indeed,
the self-similarity interpretation has been invoked in explaining why the fractal dimension of
neural activity corresponding to self-generated percepts is higher than that to external stimuli
(Ibanez-Molina and Iglesias-Parro, 2014). In a truly self-similar time series, however, fractal
dimension and the Hurst exponent are strictly inversely related (Gneiting and Schlather, 2004);
in contrast, both values positively covaried with SoA in the electrode in which we find Hurst was
predictive. This finding suggests the neural response to muscle movement (as reflected in EEG)

is not strictly self-similar, and so its complexity and sensitivity to perturbation can vary
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independently. While admittedly quite speculative, this observation may be interpreted as having
functional importance, allowing sensorimotor cortical regions (which could possibly account for
the frontocentral Hurst effect) to selectively modulate sensitivity to input, while overall cortex

shows higher signal complexity with sense of agency.

In summary, while SoA has become a topic of increased attention in recent decades, most
research in the area has focused on the experience of agency over downstream consequences of
one’s actions as they affect the external world rather than the more basal experience of directing
one’s own muscles (Haggard, 2008, 2017). We introduce the use of human-in-the-loop Bayesian
optimization, in combination with electrical muscle stimulation, to experimentally manipulate
the subjective experience of controlling the musculature. As we showcase here, this approach
enables novel behavioral and neuroimaging investigations into the substrate of embodied self-
awareness. Our results provide confirmatory evidence for the predictive relationship between
low-level sensorimotor processes and SoA for muscle movements, which seems not to hold for
the sensory response to action consequences (Dewey and Knoblich, 2014; Timm et al., 2016).
While our findings suggest that early neural correlates of SoA may differ by context and
modality, the transition from transient to sustained neural patterns that predict SoA in our data
suggest at least two distinct neural processes contributing to agency judgments, as posited by
dual-process theories of action selection and monitoring (Del Cul et al., 2009). This leaves open
the possibility that modality-specific, pre-conscious predictors of SoA are still integrated into a
single agency judgment downstream. Such a possibility could explain how information from
multiple scales of biological organization are integrated into a unified experience of self, even if
the mechanism of self-other differentiation differs across scales. We suggest that this hypothesis

is a fruitful avenue of research for the emerging science of self-awareness.
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Figure Captions

Figure 1: Task design. (a) Full experiment consists of a short pretest to gauge subjects’ reaction times, a
stimulation block, and a posttest block to ensure true reaction times did not change dramatically over the course of
the experiment. (b) Trials follow a typical cue-response reaction time paradigm, in which subjects are asked to press
a button as quickly as possible following a cue to move. (b) In the stimulation block, subjects still attempt the
reaction time task, but their natural movements can be preempted by muscle stimulation. After each trial, subjects
guess whether the muscle movement resulting in the button press was self-caused or caused by muscle stimulation.
Responses are used to tune the timing of muscle stimulation to a latency between 50-600 ms at which roughly 50%

of trials are perceived as self-caused via Bayesian optimization (as shown in Figure 2).

Figure 2: Trial-by-trial stimulation latency over the course of the stimulation block for a representative
subject. (a) Stimulation latency hones in on a stable value over time, as a result of the Bayesian Optimization
procedure. (b) A logistic regression computed after the experiment and shows that stimulation times are close to the
retroactively estimated 50% threshold, even though that threshold was not known in advance. The subject featured

here is “sub-07” in the associated dataset.

Figure 3: Electrical muscle stimulation consistently preempted subjects’ volitional movements. (a) Posterior
distributions of the mean reaction times in each condition show that EMS-induced muscle movements occur earlier
than subjects’ natural muscle movements. (b) After outlier removal, measured “reaction” times (shown for all trials
and subjects) are a nearly linear function of the stimulation latency, indicating that movements in the remaining

trials are, in fact, EMS-actuated.

Figure 4: The grand-average evoked EEG response to muscle stimulation. The depicted waveform was
computed by averaging the preprocessed (1-30 Hz filtered) data across stimulation trials within each subject, and

then averaging the resulting subject-level EEG responses to obtain a group-level average.
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Figure 5: Temporal generalization of neural patterns predicting sense of agency. (a) Classification performance
(ROC-AUC) for decoding subjects’ judgement of agency for individual muscle movements, cross-validated across
subjects and across time. Results are shown for all (train-time, test-time) pairs to visualize the temporal dynamics of
patterns that predict SoA. Above-chance decoding only near the diagonal reflects neural patterns which predict
agency only transiently, whereas above chance decoding far off-diagonal reflects patterns which are sustained over
time. Thus, patterns predicting agency appear to transition from transient to sustained dynamics around 170
milliseconds following stimulation. (b) Lower bounds on the true-positive proportion (TPP) within clusters,
computed across all clustering thresholds. The value represented at each (train-time, test-time) pair is the highest
TPP of any cluster in which that pair is included, thus larger values reflect greater certainty in the localization of

effects.

Figure 6: Voltage patterns that predict sense of agency. (a) The EEG topographies that the linear classifiers
trained at each timepoint select for, reconstructed by inverting the trained classifier parameters using Haufe’s trick
(Haufe et al., 2014). (b) The decoding performance when testing at each train time (identical to the values on the
diagonal in Fig. 5a). Training times are highlighted in yellow if included in a cluster with TPP > 0.95 at any test

time (Fig. 5b).

Figure 7: Classification performance for predicting trial-by-trial sense of agency from single-electrode fractal
metrics. (a) Classification performance for Higuchi fractal dimension. (b) Classification performance for the Hurst

exponent. Electrodes included in clusters in which the true positive proportion exceeds 95% are marked with white.
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